
NASA Contractor Report 4145

[ /

Two-Equation Low-Reynolds-Number

Turbulence Modeling of Transitional

Boundary Layer Flows Characteristic

of Gas Turbine Blades

Rodney C, Schmidt and Suhas V. Patankar

GRANT NAG3-579

MAY 1988

levi m



NASA Contractor Report 4145

Two-Equation Low-Reynolds-Number

Turbulence Modeling of Transitional

Boundary Layer Flows Characteristic

of Gas Turbine Blades

Rodney C. Schmidt and Suhas V. Patankar

University of Minnesota

Minneapolis, Minnesota

Prepared for

Lewis Research Center

under Grant NAG3-579

N/LqA
National Aeronautics
and Space Administration

Scientific and Technical
Information Division

1988



iii

TABLE OF CONTENTS

1.0 INTRODUCTION

1.1 The Scope and Objectives of This Thesis

1.2 Overview of Turbine Blade Heat Transfer

1.2.1 General description

1.2.2 Transition

1.2.3 Free-Stream Turbulence

1.2.4 Pressure Gradients

1.2.5 Curvature

1.3

1.4

Literature Survey

1

1

3

3

7

9

12

14

16

1.3.1 Overview of Turbulence Modeling 16

1.3.2 Predicting Transition with Two-Equation Turbulence Models 23

1.3.3 Relevant Transition Experiments 27

Outline of the Thesis 29

2.0 THE MATHEMATICAL REPRESENTATION OF THE PROBLEM

AND THE NUMERICAL SOLUTION PROCEDURE 35

2.1 The Boundary Layer Equations 35

2.2 The Turbulence Models Employed 38

2.2.1 k-E Low-Reynolds-Number Turbulence Models 38

2.2.2 The Jones-Launder and Lam-Bremhorst Models 41

2.3 The Numerical Solution Procedure 44

PRECEDING PAGE BLANK NOT FILMED



iv

2.3.1 The Patankar-Spalding Parabolic Solution Method

2.3.2 Near Wall Grid Refinement

2.3.3 Specification of Initial Starting Profiles and Boundary

Conditions

2.3.4 Numerically Representing fls and fl

45

47

5O

57

3.0

3.1

3.2

3.3

3.4

3.5

EVALUATING THE TRANSITION PREDICTION

CHARACTERISTICS OF TWO LRN k-e MODELS

Objectives of the Evaluation

Sensitivity to the Starting Profiles of k and e

Sensitivity to the Starting Location

Sensitivity to Free-Stream Turbulence

Summary

62

62

64

67

69

71

4.0 DEVELOPMENT OF AN IMPROVED APPROACH TO SIMULATE

TRANSITION WITHIN THE FRAMEWORK OF THE k-e LRN

TURBULENCE MODELS

4.1 Preliminary Comments

4.1.1 Method of Rodi and Scheuerer

4.1.2 Desired Characteristics

4.2 A Simple Improvement to The Lam-Bremhorst Model

4.2.1 The Problem and it's Cause

4.2.2 A Solution

4.3 The Mechanism by which the Model Simulates Transition

77

78

79

80

81

81

83

84



V

4.4

4.5

4.5.1

4.5.2

4.5.3

4.5.4

Stability Considerations

A Modification to the Production Term

Applying a Stability Criteria

Limiting the Growth Rate of the Production Term

Numerical Implementation

Determining the Transition Parameters A and B

86

88

89

90

92

94

984.5.6 The Effects of High Free-stream Dissipation Rate

4.6 Transition Calculations with the PTM version of the

Lam-Bremhorst Model 99

4.7 Application of the Modification to the Jones-Launder Model 101

4.8 Starting Conditions and the PTM models 105

5.0 COMPARISON OF THE PROPOSED MODEL WITH

EXPERIMENTAL DATA 132

5.1 Simple Flat Plate Flow with Free-Stream Turbulence 134

5.1.1 Data of Wang 134

5.1.2 The Use of the Streamwise vrs. Total Turbulence Intensity 136

5.1.3 Data of Rued 137

5.1.4 Data of Blair and Werle 139

5.1.5 Discussion and Summary 142

5.2 Transitional Flows with Acceleration 143

5.2.1 144

5.2.2 146

5.2.3 148

Some Limitations Inherent in the 2-Equation Approach

Data of Blair and Werle

Data of Rued



vi

5.2.4 Summary of the Prediction Capabilities for Flows with

Acceleration

5.3 Turbine Blade CascadeData

5.3.1 Preliminary Comments about the Calculations

5.3.2 Comparison with the Data of Daniels

5.3.3 Comparison with the C3X blade of Hylton et al.

5.3.4 Brief Summary of the Turbine Blade Data Predictions

153

154

155

157

158

160

6.0

6.1

6.2

6.3

CONCLUDING REMARKS

Contributions of this Work

Limitations of the Approach Developed

Thoughts about Further Research

190

190

192

193

REFERENCES

APPENDIX A1; The Computer Code

A Brief Description of the Code

Definitions of FORTRAN variables and arrays

A Listing of the Subroutines and Functions

The UM1 functions used

A Listing of program MAIN

Sample Input Files

APPENDIX A2;

APPENDIX A3;

APPENDIX A4;

Variable property equations

Tabulated experimental data

Code used to calculate starting location velocity

profile parameters

195

205

205

208

217

230

235

240

246

249

261



vii

NOMENCLATURE

arc

A,B

Cf

%
C_,C1,C2

dx

D

E

fl

f2

h

h'

II

The total surface arc length on either the suction or the pressure

side of the turbine blade of interest

Empirical parameters in the proposed modification. See eq.

(4.6). Correlated as functions of Tu e

Skin friction coefficient

Specific heat at constant pressure

Constants in the k-e turbulence models. See Table 2.1

Computational step size in the streamwise direction

Empirical function introduced in some low-Reynolds-number

models to modify the dissipation rate variable near the wall. See

eq. (2.11) and Table 2.2

Empirical function introduced in some low-Reynolds-number

models. See eq. (2.13) and Table 2.2

A low-Reynolds-number function used to modify the near wall

behavior of the production term in the e equation.

A low-Reynolds-number function used to modify the near wall

behavior of the destruction term in the e equation.

A low-Reynolds-number function used to modify the near wall

behavior of the turbulent viscosity. See eq. (2.10)

Mean static enthalpy

Fluctuating static enthalpy

local heat transfer coefficient
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h'v'

H

k

K

1
u

Le

M1

M2

M3

Nu

P

Pk

Pr

Pr t

qw

R

Re x

Re0

Re0,c

Re0,s

Re0,E

R t, Ry

S

Apparent turbulent heat flux

Total or stagnation enthalpy. See eq. (2.4)

Turbulent kinetic energy

Acceleration parameter. See eq. (1.4)

A mixing or a turbulence length scale. See eqs. (1.5) and (1.9)

A free-stream turbulence length scale. See eq. (1.3)

The number of computational nodes in the cross-stream direction

MI-1

M1-2

Nusselt Number

Static pressure

Modelled production term in the k equation

Molecular Prandtl number

Turbulent Prandtl number

Heat flux at the wall

Gas constant in the ideal gas law (eq. (2.6)) or radius of a

cylinder (eqs. (2.41 )-(2.49))

Reynolds number based on x

Reynolds number based on momentum thickness

Momentum thickness Reynolds number below which Pk is set to

zero in the implementation of the "PTM" model

Momentum thickness Reynolds number at the start of transition

Momentum thickness Reynolds number at the end of transition

Turbulent Reynolds numbers defined in eqs. (2.14) and (2.15)

A very small number, s -- 10 1° See section 2.3.4
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S

s(x)

St

Tu

U

UX

! ! W !U,V,

U'V'

W

X

Y

y+

P

8

0

_w

D

l) t

Streamwise distance from the stagnation point around either

surface of a turbine blade
'_w 0

Shear correlation. S(_.) =

Stanton number. See eqs. (5.1) and (5.4)

Turbulence intensity

Mean velocity in the x direction

friction velocity, u x = _w/P

Fluctuating velocities in the x, y, z directions

Apparent turbulent stress

Pseudo-vorticity density. See eq. (1.8)

Streamwise distance from the leading edge

Cross-stream distance from the wall

Non-dimensional distance from the wall defined in eq. (2.16)

Fluid density

Boundary layerthickness

Thermal boundary layerthickness

Momentum thicknessoftheboundary layer

Dissipationrate

Modified dissipationratevariable.See eq.(2.11)

Shear stressatthewall

Molecularviscosity

Eddy orturbulentviscosity

Kinematic viscosity, x) = p/p

Turbulent kinematic viscosity, _)t = lh/P
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ak, a_

A

Subscfiots

e

i

W

0

Empirical constants in the turbulence models. See Table 2.1 and

eqs. (2.12)-(2.13)

Nondimensional stream function. See eq. (2.21)

Stream function. See eq. (2.22)

Grid coordinate used in grid generation method. See eq. (2.23)

Local acceleration parameter based on the momentum thickness

See eq. (2.31)

Local acceleration parameter based on the boundary layer

thickness & See eq. (2.32)

Denoting free-stream value

Denoting value at the initial starting location of the calculation

Denoting value at the wall, ie. y=0

Denoting value at x=0

Special

min(a,b)

loge( a )

a'

LRN

PTM

Denoting

Denoting

Denoting

Denoting

the minimum of the two values a, b

the maximum allowable value of a

the logarithm to the base e of a

the time average of the fluctuating quantity a'

Short for Low-Reynolds-Number

Acronym for Production Term Modified. Used to denote the k-

e LRN model modifications developed in this thesis.



CHAPTER ONE

INTRODUCTION

1.1 THE SCOPE AND OBJECTIVES OF THIS THESIS

As desired operating temperatures and efficiency levels of advanced

turbine engines continue to increase, the accurate prediction of gas side heat

transfer on the turbine blades becomes increasingly critical in the

development and design process. Although methods to accurately solve a

variety of fluid flow and heat transfer problems have been developed,

efforts to apply and extend these methods to the calculation of heat transfer

on turbine blades have so far proved somewhat unsatisfactory. This is due to

the complex nature of the transitional and turbulent flow inherent in the

problem and the failure of our mathematical models to consistently simulate

these phenomena correctly.

The main goal of this thesis is to describe the development of an

improved method of predicting transition in boundary-layer flows

developing under conditions characteristic of gas turbine blades. Knowing

somewhat the complexities of this problem from the start, certain limitations

were of necessity made on the scope this work. The first of these was to

consider only the time averaged two-dimensional aspects of the problem. On

a turbine blade, where endwaU effects can be significant, this translates to

considering only the nearly two-dimensional midspan region. Furthermore,

since there are a large number of potential approaches to solving this

problem, a restriction was made on the framework within which an
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improved solution method was sought. The work presented here will focus

on exploring and developing the potential of low-Reynolds-number k-e

turbulence models for solving this problem.

A variety of different low-Reynolds-number ( hereafter referred to as

"LRN") modifications to the standard k-e model have been proposed in the

literature. These modifications are designed to extend the validity of two

equation turbulence models through the viscous sublayer to the wall. One

attractive characteristic of this type of model is the seemingly natural process

by which boundary layer transition is simulated when the free-stream flow is

turbulent. However, since these methods are relatively new, there is a lack

of adequate documentation showing how well the starting location and length

of transition is predicted by these methods for simple flows. Thus, one

objective of this thesis is to test and clearly document the predictive

capabilities of two of these models. Both an empirical correlation and

specific experimental data sets will be used to provide a broad background

within which to evaluate and contrast these models.

The next objective is to use knowledge gained by exploring these

methods on less complex flows, to propose modifications designed to

improve the transition predictions in more general situations typical of a

turbine blade. These modifications will then be thoroughly tested against a

wide range of experimental data. Factors known to influence transition and

which will be included in these tests include the effects of free-stream

turbulence, strong favorable pressure gradients, and variable properties. In

concluding these tests, the predictions ef the method will be compared with

the results from a number of actual turbine blade cascade experiments.



1.2 OVERVIEW OF TURBINE BLADE HEAT-TRANSFER

Although the focus of this thesis is on only one aspect of the total

external heat transfer problem (transition), a somewhat broader overview of

the problem will be given here as a means of setting a proper perspective.

1.2.1 General description

The problem of external heat transfer on turbine blades has become

especially important in recent years as the desired operating combustion

temperatures have now significantly surpassed the melting temperatures of

the materials available for constructing the turbine components. In the past,

most design decisions have been made from the results of very expensive

experimental work. As numerical models have become more sophisticated,

and computers have increased in speed, the potential to reduce the number of

required experiments by using appropriate computer simulation in the design

loop has been recognized. And indeed, this has been realized in many areas

of the design process. However, although much progress has been made,

agreement between experiment and the numerical predictions for the heat

transfer on the surface of the turbine blades themselves has still not been

consistently satisfactory, especially for the region of the blade over which

transition occurs.

In a typical turbine engine, large numbers of blades extend radially

outward from a central shaft, the tips leaving only a very small clearance

between the blade and the outer endwall. Hot gas from the combustion
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chamber, at a temperature on the order of 2500 F (1370 C) and at a pressure

of 20-25 atm. enters the turbine region in a highly agitated, turbulent

condition. The gas then proceeds through alternating rows of blades

(moving) and vanes (fixed) where lateral kinetic energy from the

combustion gases is converted into rotational kinetic energy.

A cross-section at midspan of a typical turbine blade is shown in

Figure 1.1. The underside of the blade is commonly called either the

"pressure" or "concave" side. The top side of the blade is commonly called

either the "suction" or the "convex" side. On each blade there exists a

stagnation point, the place on the blade where a line drawn normal to the

surface is exactly parallel to the approaching upstream flow. It is from this

point, and extending around each side of the blade, that a thin viscous region,

the boundary layer, develops and grows. Outside of this region, although

the flow may still be complicated, the flow field is essentially inviscid.

Because of the distinctly different nature of these two regions, most attempts

to model or simulate the flow field are made by analyzing the two regions

separately. The larger inviscid region is calculated using methods which

solve the inviscid Navier Stokes equations, ie. Euler's equations. The thin

region close to the surface is solved using equations which include the

important viscous terms, but neglect other terms due to the parabolic nature

of flow.

In a real turbine, both the inviscid outer region and the thin boundary

layer region are three dimensional in character. However, in the midspan

region, three dimensional effects appear to be of secondary importance. It is

generally believed that in this region an analysis neglecting these effects
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should not be seriously in error. Furthermore, it is in this region that the gas

temperatures are usually highest and thus of greatest concern. This is not to

say that three dimensional effects are unimportant. For example, the endwaU

region heat transfer problem, strongly three dimensional in nature, is also of

great importance. That problem, however, can hardly be expected to be

fully solved unless the flow is first well understood in the neighboring nearly

two dimensional midspan region.

The most serious challenge to the validity of the two dimensional

assumption has been the theory that the observed increase in heat transfer on

the concave side was caused by three-dimensional streamwise vortices

similar to the Taylor-Gortler vortices seen in laminar flow. However, Kays

and Moffat [40] have argued very convincingly that this is not the case and

conclude that "a two dimensional code should work as well in the concave

region as in the convex". Thus from here on we will concentrate on those

factors which can be modeled within the framework of a two dimensional

boundary layer approach.

The boundary layer development on a typical gas turbine blade is

influenced by a great number of complicating factors, many of which are not

yet fully understood. A list of topics which are important would include the

following:

* free-stream turbulence effects,

* effects of adverse and favorable pressure gradients,

* laminar-turbulent transition,

* relaminarization,
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* near-wall, "low-Reynolds-number" effects,

* stagnation flow with free-stream turbulence,

* curvature effects,

* body force effects (due to spinning),

* variable property effects,

* effects of surface roughness.

This is a formidable list, and most of these continue to be in and of themselves

topics of continuing extensive research. Nevertheless, in order to accurately

solve the turbine blade heat transfer problem, we must in some way account

for all of these effects which prove significant. Furthermore, any major

synergistic effects, if they occur, must also be appropriately modeled.

It is not possible within the scope of this introduction to give a

thorough discussion and literature review for each of these topics

individually. However, a brief introduction and review of some of the more

recent literature with respect to four of the most important of these topics

will be given next. The topics and factors that are generally believed to be of

greatest importance include transition, free-stream turbulence effects,

pressure gradient effects, and curvature effects. The reader may also wish to

consider the excellent overview of many of these factors as they relate to

turbine blade heat transfer presented by Graham [28]. Other references

which provide a good source of general information relating to this problem

include Martin and Brown [49] and the introductory material in Hylton et al

[34].
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1.2.2 Transition

The process by which a laminar boundary layer changes to a turbulent

boundary layer is termed transition. Since the flow and heat transfer

characteristics of these two regimes are so dramatically different, the

accurate prediction of this process is very important. Unfortunately, in most

fluid flow problems of interest, transition is also a very difficuk process to

model. It is one of the major stumbling blocks in the prediction of the

external heat transfer on gas turbine blades [28].

Transition is a complex phenomenon and is influenced by a variety of

factors. Reynolds number, free-stream turbulence, pressure gradient,

surface roughness, and curvature are just a few of the parameters found to be

important. The details of the mechanisms by which transition occurs are not

completely understood despite a vast amount of research. We do know that

the onset of transition is essentially a stability problem. For example, from

the mathematics of stability theory, we are able to learn the conditions under

which small perturbations are amplified instead of damped, a necessary first

step in the transition process.

Early research focused primarily on the simple case of transition

occurring on a flat plate under a relatively quiescent free-stream flow.

Theory has predicted and experiments now verified that for this case the

process begins with the formation of two-dimensional Tollmien-Schlichting

waves moving in the direction of the flow. The process becomes three-

dimensional and non-linear as the waves develop spanwise variations and are

amplified. From then on there is a cascade of vortex breakdowns which end



in fully three dimensional fluctuations of an almost random nature.

Experimentally one finds that the breakdown of the laminar boundary layer

does not occur everywhere across the flow at the same streamwise location.

The breakdown occurs instead at apparently random spots, with bursts so to

speak of turbulence. These turbulent spots spread laterally downstream until

the entire boundary layer is engulfed. The final stages of the transition

process manifest themselves by a relatively sharp increase in the skin friction

coefficient. In the caseof heat transfer, this will also correspond to a sharp

increase in the Stanton number. Tani [84] is one source of a fairly detailed

review of this process as it is currently understood.

Probably the most dominant factor modifying the process of transition

is the magnitude of the free-stream turbulence intensity. The major effect of

this influence is to displace the location of transition upstream, and to shorten

the length over which it occurs. It also tends to increase the spanwise

homogeneity of the transition process. This will be discussed in more detail

next in section 1.2.2.

Adverse pressure gradients and convex curvature also tend to promote

the transition process, as both of these factors are destabilizing to the

boundary layer. Conversely, favorable pressure gradients and concave

curvature are stabilizing, and thus tend to inhibit the start of transition.

Unfortunately, research has not yet clearly distinguished the separate effects

of these parameters in a well quantifiable manner.
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1.2.3 Free-Stream Turbulence

Free-stream turbulence has been found to influence every stage in the

development of the boundary layer. It's importance to the work in this thesis

is made clear in the following quotation.

"The major uncertainty in predicting gas side heat transfer rates

anywhere on the blade is the interaction of the free-stream

unsteadiness and turbulence with the boundary layers on the blade.

Such interaction will determine the nature of the boundary layer,

control the mechanism of transition and in the last analysis, establish

the levels of heat transfer."

R. W. Graham, 1979 [28]

The definition of free-stream turbulence intensity is not always

consistent within the literature. This variation is caused by the inclusion of

the turbulent fluctuations in each direction for some cases, but only the

streamwise direction in others. When a distinction is needed within this

thesis, the following nomenclature and def'mitions will be used.

Tue- Ue (1.1)

Tue,T = Ue (1.2)
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The primary effects of free-stream turbulence are the enhancement of skin

friction and heat transfer, and the displacement upstream of the transition

region. However, the degree to which this occurs varies depending upon

both the local nature of the boundary layer over which it occurs, and

according to other free-stream conditions such as the pressure gradient.

The effect of free-stream turbulence on stagnation flow heat transfer

has been studied over the years by Kestin and co-workers [41,43]. They have

both documented the observed increase in heat transfer for various levels of

Tue, and presented evidence suggesting a particular mechanism as

responsible for this increase.

The effect of free-stream turbulence on a developing laminar

boundary layer is somewhat more difficult to determine. This is because as

the free-stream turbulence is increased, the region over which the boundary

layer remains laminar becomes increasingly short, and measurements

correspondingly more difficult. It was initially reported by researchers such

as Junkhan and Serovy [38], and Kestin et al [42], that laminar heat transfer

rates were not perceptibly increased for zero pressure gradient conditions.

However, other work presented by Dypan and Epik [24], has reported

significant increases in heat transfer for the laminar case.

In the case of fully turbulent flows, the research has been more unified

and consistent in showing an increase in heat transfer and skin friction. Some

of the more recent published papers which deal with this include the work of

Hancock and Bradshaw [31], Meier and Kreplin [53], and Blair [! 1,12]. The

results of Blair are representative of the basic characteristics described in all

of these papers. He reports that higher free-stream turbulence leads to
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slightly fuller velocity profiles, resulting in higher momentum thicknesses

and smaller form parameters. This also leads to an increase in skin friction

and heat transfer. For example, Blair found that for a 6% turbulence

intensity level, the heat transfer and skin friction are increased by 18% and

14% respectively. He also reports that the effects of free-stream turbulence
U

can be correlated reasonably well with two parameters, Tu e (eq. 1.1) and Le,

a free-stream turbulence length scale defined as;

_2'_3/2
-( u /e

Le= d( ff;2)e (1.3)

Ue d x

The effect of Tue on transition has also been extensively studied, and it

is the results of this research that are of primary concern to the work of this

thesis. Representative of the many experiments dealing with this topic for

zero pressure gradient conditions are those of Blair and Werle [8], Rued

[72,73], Wang et al [90,91], Abu-Ghannam and Shaw [2], and Junkhan and

Serovy [38]. In each of these studies the previously mentioned upstream

displacement of transition is clearly exhibited. Furthermore, although there

is significant scatter in the data, it has been found that these experiments can

be reasonably correlated to the local momentum and displacement thickness

Reynolds numbers. Correlations of this type have been presented by Hall and

Gibbings [30], Van Driest and Blumer [89], and more recently by Abu-

Ghannam and Shaw [2].
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Other experiments have attempted to show the combined influence of

free-stream turbulence and pressure gradients on transition. This is

discussed in the next section.

1.2.4 Pressure Gradients

The other dominant factor influencing boundary layer development,

transition, and the heat transfer on a turbine blade is the pressure gradient

influence. The pressure side of a turbine blade is commonly characterized by

a strong acceleration ("favorable" pressure gradient) along the entire length

of the blade. In contrast, the suction side is often characterized by an initial

region of extremely strong acceleration, followed by at least a short region

of mild deceleration ("adverse" pressure gradient). The effects of pressure

gradients on laminar and turbulent boundary layers has been a long standing

topic of research. Much of the past research has been dedicated to the study

of pressure gradients on either fully turbulent, or fully laminar boundary

layers, without other complications. An excellent review of the literature

dealing with this topic can be found in Kays and Moffat [40].

Recently, studies have focused more Strongly on the combined

influence of free-stream turbulence and pressure gradient on both fully

turbulent boundary layers, and on transition. These studies are of even

greater relevance to the turbine blade heat transfer since they would include

any synergistic interactions that might occur. Recent studies of particular

importance to the work in this thesis include those of Blair and Werle[9,10],

Rued and Wittig [72,73], Abu-Ghannam and Shaw [2], Junkhan and Serovy
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[38], and Van Driest and Blumer [89]. The following outline summarizes

some of the important qualitative aspectsof acceleration which are important

to the work in this thesis.

Accelerati0n of the free-stream flow;

1) causes stretching of the turbulent eddies which results in reduced

turbulent intensities.

2) is stabilizing, ie. it tends to prevent or hold off transition, and

when it does occur the transition length is longer.

3) can cause relaminarization, a process whereby an originally

turbulent boundary layer reverts to a quasi-laminar state.

4) tends to diminish heat transfer rates

5) is often measured with reference to an acceleration parameter K

def'med as

Deceleration of the free-,tream flow:

(1.4)

1) enhances turbulent intensities

2) increases heat transfer and skin friction

3) is destabilizing, ie. promotes transition

4) may lead to separation
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1.2.5. Curvature

It has been known for many years that surface curvature can

significantly affect both laminar and turbulent boundary layers. These

effects have been found to occur even for very small radii of curvature

(_5/R=100). Qualitatively one finds that concave curvature tends to increases

the skin friction and the heat transfer, whereas convex curvature tends to

decrease the skin friction and heat transfer.

The effects of curvature on a boundary layer are different in

magnitude for turbulent flow as compared to laminar flow, although still

qualitatively similar. The fractional change in shear stress due to curvature

in laminar flow is of the same order of magnitude as the ratio of theshear

layer thickness to the radius of curvature (6/R). In contrast, turbulent flow

experiments show changes in shear stress an order of magnitude greater than

for laminar flows of the same curvature [14]. This would indicate that

streamline curvature increases the Reynolds stresses in turbulent flow

roughly ten times as much as it changes the viscous stresses.

Experiments have shown that convex curvature effects the turbulence

in the boundary layer such that large scale eddies are destroyed and the

turbulent length scales reduced. These effects are stronger in the outer

regions of the boundary layer than in the inner, and tend to be two

dimensional in nature. These changes result in reduced heat transfer and skin

friction coefficients [26,27,81]. In contrast, concave curvature tends to

increase the turbulence intensity and Reynolds shear stress across the middle

and outer parts of the boundary layer, causing an increase in the heat transfer
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and skin friction. Furthermore, these effects can be three dimensional in

nature. In laminar flow these three-dimensional effects manifest themselves

as the so-called Taylor-Gortler longitudinal vortices. Unfortunately, the

effects on turbulent boundary layers are still not completely defined and the

topic somewhat controversial. Barlow and Johnston [6] have reported one of

the most recent major studies in this area.

A peculiar characteristic of turbulent boundary layers subjected to a

curved region and then returned to fiat plate conditions, is a surprisingly

slow recovery to fiat plate conditions. Experimental results show that when

curvature is suddenly removed after a region of convex curvature, that there

is a quick partial recovery followed by a slow exponential-decay-like return

to fiat plate conditions [3,27].

The relative importance of curvature effects on transition have yet to

be extensively studied We do know that convex curvature is qualitatively

stabilizing ( ie. suppresses transition) and concave curvature destabilizing (ie.

promotes transition). The study of Wang and Simon [93,(91)] is a recently

reported effort to gain a better understanding of these effects. This study was

done at two different levels of free-stream turbulence and with convex

curvature. Their results seem to indicate that except for very low free-

stream turbulence levels, the effect of convex curvature on transition is

minor. This conclusion has important implications to the turbine blade heat

transfer problem because in general, the free-stream turbulence levels are

moderate to high over most of the blade. Thus, based on these results

curvature effects would not be expected to strongly influence the transition

process on turbine blades
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1.3 LITERATURE SURVEY

This literature review will focus on published work directly related to

the low-Reynolds-number modeling technique developed in this thesis. Also,

the experimental data with which to test the model will be reviewed. For

perspective, a brief overview of turbulence modeling in general, and the

place that two-equation "k-e" models have among the spectrum of techniques

available will also be given.

1.3.1 Overview of Turbulence Modeling

The calculation of transition by necessity requires the capability to

model fully turbulent flow after the transition process is complete. Thus, all

transition models must in some manner be coupled to a turbulence model.

Since a large variety of methods to model turbulent flow have been

developed over the years, a brief overview will be given here so as to place

the k-_ turbulence model in perspective.

There are tremendous differences

applicability among turbulence models.

generality is a corresponding increase in complexity and computational

effort. Furthermore, there are many more models that have been proposed,

than there are that have been adequately tested against experimental data.

in complexity and range of

Usually the cost of increased
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Turbulence models may generally be classified according to their

complexity in the following manner,

a) mixing-length models (zero order models)

b) "N" equation models, N--l, 2, ....

c) Large eddy simulation models (full Navier Stokes equations)

The oldest, simplest, most well known, and even today, most

commonly used type of models are variations of Prandtrs original approach

introduced back in 1925 [63]. This method relates knowledge of a so called

mixing length 'T', to the magnitude of the Reynolds shear stress through the

concept of a turbulent or eddy viscosity "ut" proposed by Bousinesq [16] in

1877. This relationship is shown below.

igU t igU a2
-gu_' _-ut (_-) --12 ,_', (1.5)

One implication of models of this type is the presumed equivalence between

the "generation" and "destruction" of the turbulence quantities affecting the

Reynolds shear stress. This is the so called "near-equilibrium" assumption.

Application of the Prandtl mixing length method requires empirically

determined knowledge of the mixing length. Fortunately a vast amount of

experimental data has been gathered for this purpose. This has provided the

engineer with a very valuable tool for analyzing many commonly

encountered flows. Furthermore, with todays computer capabilities most

calculations are quick and inexpensive. However, outside the domain for
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which an appropriate mixing length has been empirically determined the

method cannot be applied with confidence.

To calculate transition within the framework of a mixing-length

model, additional empirically based sub-models must be introduced in order

to determine the start, the length, and the path of transition. The basic idea is

to algebraically vary the magnitude of u t from zero to an appropriate fully

turbulent value during the simulated transition process. An excellent review

and evaluation of the these types of transition models as applied to convex-

curved transitional boundary layers has been given by Park and Simon [60].

In a similar manner, Hylton et al [34] have evaluated, developed and applied

this type of modeling to a variety of turbine blade data sets. Another study

of this kind is that of Forest [25]. These studies have helped to establish the

limits of applicability for models of this type, and also provided motivation

to continue to explore higher order turbulence models so that the dependence

on near-equilibrium empiricism can be relaxed.

The "N" equation model category implies that N additional transport

equations are solved to determine local values of N statistical properties of

the turbulence. These turbulence quantities are then related to appropriate

effective transport properties in the time-averaged momentum and energy

equations. The general form of these additional equations can usually be

written as follows;

div grad _) S_ = 0 (1.6)P Dt - (F+
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where _ is the turbulence quantity, D/Dt is the substantial derivative, Ft_is a

diffusion coefficient, and S_ is a source term(s). This concept in turbulence

modeling was first introduced by Kolmogorov [44] and Prandtl [64], but it

was not until computers became available that these approaches could

effectively be developed.

Most one equation models choose the turbulent kinetic energy "k", as

the turbulence property of interest (some work has been done with an

equation for the shear stress _'v'). Examples of models of this type include

those of Bradshaw et al [15], Nee and Kovaszney [56], Hassid and Poreh

[33], and Grundmann and Nehring [29]. To account for the near wall

damping of turbulence, these models can be modified such that the turbulence

viscosity includes a functional dependence on a local turbulence Reynolds

number. Since in this method an appropriate length scale must still be

prescribed algebraically according to previously determined empirical

information, the method also suffers from a significant dependence on flow

dependent empirical information.

A variation on the one equation approach that is simpler in some

respects, is the solution of an integrated form of eq. (1.6) for the turbulent

kinetic energy. This introduces additional information into the turbulence

modeling without the need to solve an additional partial differential equation.

However, other empirical and theoretical relationships must be used in

addition to the prescription of the length scale profile in order to compute the

flow. A model of this type has been developed by McDonald and Camarata

[51] and was extended to incorporate a transition modeling capability by

McDonald and Fish [52]. They also provide a way to include the effect of
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free-stream turbulence and of surface roughness. This method was tested

against a number of flows and shown to give reasonable results. However,

when applied by Daniels and Browne [20] to the turbine blade data of Daniels

[19], the method did not appear to show improvement over simpler mixing

length models.

Two-equation turbulence models, like most one equation models, solve

an equation for k., the turbulent kinetic energy. In addition, they also solve

an equation for a parameter related to the local turbulence length scale.

Choices for this parameter have varied, and three of the most common

are"e", the dissipation rate; "W", a pseudo-vorticity density; and "k*r',

where 1is a turbulence length scale. These quantities are related to each other

through the following def'mitions;

Oui _ui
-" V _)Xk_X k (1.7)

W= (CDe-_k_2 (1.8)

C D k 3/2
1- ¢ (1.9)

where C D is a constant.

Thus, it is possible to transform a set of k-W equations, into say an

equivalent set of k-e equations. This can be instructive for it clarifies that the

real differences between the various models lie in the representation of the

transport and source terms, and in the constants employed. Since "exact"
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equations governing both k and e can be derived, the differences between the

various models are introduced in the process of reducing these exact forms

into a tractable approximate form suitable for computation. Modelers must

choose which terms can be considered insignificant and dropped, and how

best to approximate the higher order correlations that remain. These

choices, and then the determination of the constants that are introduced, are

the essence of turbulence modeling in the "N-equation" category.

Examples of the k-e model that have been proposed are Harlow and

Nakayama [32], and Jones and Launder [36]. Spalding [83], Ilegbusi and

Spalding [35], and Saffman [75] have used the k-W formulation, while Rotta

[71] and Ng and Spalding [57-59] have developed k-kl models. The reader is

referred to an excellent monograph by Rodi [70], and a paper by Launder

and Spaulding [48] for more detailed information.

It is important now to introduce and explain what a low-Reynolds-

number form of a two-equation turbulence model is. In regions adjacent to

solid walls, the character of turbulent motions is significantly altered. To

properly account for this region, additional modifications must be made to

the turbulent transport equations. This is usually done through the

introduction of so called low-Reynolds-number functions. Thus any of the

"high-Reynolds-number" two-equation models mentioned earlier, if further

modified to account for this effect, can be referred to as a LRN form of that

particular model.

This "LRN" type of formulation is central to the work contained in this

thesis because of an additional characteristic possessed by these models. This

characteristic is that the model becomes computationally valid in laminar,
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transitional, and turbulent flow regimes without additional modifications.

Furthermore, the influence of free-stream turbulence is naturally accounted

for.

Since the focus of this thesis is on the use of two-equation models to

predict transition, a more specific literature review and discussion relative

to this topic will be given next. Also, in chapter two, a more detailed

description of this approach from a mathematical and computational point of

view will be given. Before doing this, a brief comment about even higher

order turbulence models is in order.

"Reynolds stress or "stress equation" type models add addition partial

differential equations which may compute all of the components of the

turbulent stress tensor. One difficulty in applying this type of model to

transitional boundary layers is the lack of appropriate low-Reynolds-number

functions to simulate the near wall conditions. Another problem is the lack of

information about the turbulence quantities which must be specified at the

free-stream boundary. For each quantity calculated as part of the method,

appropriate boundary conditions and starting profiles must be specified.

Adequate information about these properties within the turbulent gas flow

exiting the combustion chamber of a gas turbine engine is not currently

available.

Finally, methods have been developed which actually compute the

three-dimensional time dependent large eddy structure of the turbulent flow,

but use simpler empirical models for the smaller scale turbulence. These

methods are currently not sufficiently developed, and too computationally

expensive and time consuming to be used for the problems considered here.
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1.3.2 Predicting Transition

Models

with Two-Equation Turbulence

It appears that Pridden [65] was the first to explore the use of a two-

equation turbulence model in predicting transition on external boundary

layer flows. Although Pridden's published work was basically limited to

showing the potential of the procedure, the results of exploratory

calculations for the pressure surface side of Turners experimental turbine

blade data [87] were later published by Launder and Spaulding [48]. These

results showed fairly good reproduction of the data. Unfortunately, no

details of the procedure relative to initial conditions, boundary conditions,

and or the application to simpler flows is given.

Wilcox [95,96] appears to be the next to use a two equation model to

predict transition. He used the Saffman-Wilcox two-equation turbulence

model [76] (a k-W formulation) and developed a method to modify two

constants in the model with an empirical function of turbulence Reynolds

number. His comparison with limited experimental data showed good

agreement for the start of transition, but the predicted length of transition

was not shown. Daniels and Browne [20] independently applied this method

to the calculation of the turbine blade data of Daniels [19]. This was part of

an evaluation of five different computational techniques. Unfortunately, one

conclusion of this comparison and evaluation was that no significant

advantages were gained from the use of this (or other) more complex
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turbulence model over the mixing length type models tested. The major

difficulty for all of the methods considered was the accurate prediction of the

transition region. A further refinement [97] uses linear stability analysis to

derive the empirical model function and the initial turbulence profiles, but

has not yet been extensively tested to this author's knowledge.

Dutoya and Mitchard [23] develop a low-Reynolds-number k-e model

specifically for use in predicting gas-turbine blade heat transfer. In

formulating the LRN functions, they provided for one constant to be

calibrated with the onset of transition. For flat plate adiabatic flow they

report good agreement between their model and the displacement thickness

Reynolds number data at the onset of transition as predicted by McDonald

and Fish [52]. They also compare the qualitative predictions of the model

against the data from a cooled turbine inducer blade, showing correct trends

on the suction side, but a problem with relaminarization on the pressure side.

Flat plate calculations were not compared to specific data nor was the

question of a correct transition length considered. Initial turbulence profiles

were all specified relative to a Blassius velocity profile and calculations were

started at Rex=103 for the flat plate cases. They reported (but do not

document) that the transition predictions were insensitive to starting profiles

for starting locations of Rex< 104. This does not agree with the results that

will be described later in chapter 3. This model was later considered in an

evaluation of of Low-Reynolds number models presented by Patel et al. [62].

They report that compared to the other models tested, this particular

formulation was not as successful as many other models.
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Arad et al. [4] applied the k-kl turbulence model of Ng [57] modified

by the LRN functions proposed by Wolfshtein [98], to predict transitional

flow in axisymmetric boundary layers. No additional modifications were

made to influence transition. Some limited comparisons between calculated

Reynolds Numbers at the start of transition showed good agreement with data

for zero pressure gradient flow. No discussion of transition length is made

nor is there an indication as to whether or not the calculations are sensitive to

the starting profiles used or to the starting location.

Hylton et al.[34], as part of their analytical methods evaluation process,

attempted to use an implementation of the Jones-Launder two-equation LRN

model [37] to predict flows over a variety of turbine blade cascade data sets.

However, they found that their implementation failed to predict transition

when applied to the turbine blade cascade data conditions. Although they

indicate the method succeeded for simpler flows with free-stream

turbulence, that work was not documented. Thus an evaluation of transition

predictions was not possible.

Wang, Jen, and Hartel [90] have applied the LRN model of Jones and

Launder [37] to the calculation of boundary layers on flat plates and to the

turbine blade cascade data of Hilton et al. [34]. Although results from fiat

plate transition calculations are shown, no attempt to compare either the start

or the length of transition with experimental data or with a correlation is

given. Furthermore, the sensitivity of the calculations to the initial starting

location and prof'des is not discussed. For the airfoil predictions, a two-zone

method near the stagnation region is developed for prescribing the

turbulence boundary conditions The key parameter is a critical velocity.,
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which was correlated with turbulence level and a leading edge Reynolds

number such that the data is reasonably reproduced. Also, the pressure side

and suction side require different correlations.

Some of the most extensive previous work in this area is that of Rodi

and Scheuerer [66,67,77]. They use the Low Reynolds Number model of

Lam and Bremhorst [45], together with an empirically correlated method of

prescribing the initial profiles for k and e. They are the first to begin to

focus on the sensitivity of the calculations to the prescribed initial conditions

and boundary conditions, pointing out the lack of adequate documentation of

these areas in previously published work. The model was tested and an

empirical coefficient "a 1'' calibrated against the data of Blair and Werle [8].

Also, the turbine blade data of Daniels [19] was calculated. More recently,

the model was independently applied by Zerkle and Lounsbury [99], once

again to the data of Blair and Werle [8], and then to vane cascade tests. This

model was also tested as part of the evaluation section of the work presented

in this thesis. This evaluation of the method resulted in two criticisms. The

first, also recognized by Rodi and Scheuerer themselves, is that the length of

transition is consistently under predicted. The second is that when tested

against a range of flat plate zero pressure gradient flows with different free-

stream turbulent intensities, the method did not consistently predict the start

or end of transition in accordance with the correlation of Abu-Ghannam and

Shaw [2]. The details of this evaluation and some of the computations are

given in chapter 3.

In summary, a review of the literature reveals that the potential of

LRN two-equation turbulence models to predict the qualitative aspects of
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transition for boundary-layer flows with free-stream turbulence has clearly

been shown by previously published work. However, in assessing this work

it appears that further research may benefit from a closer evaluation and

documentation of the prediction of simple flows before the models are

applied to more complex situations. In particular, the capability to predict

not only the start of transition, but also the path and the end of transition

needs to be further clarified. Also, how best to specify, and where to specify

the initial turbulence profiles needs to be better explored, and the sensitivity

of the transition predictions to these choices determined.

1.3.3 Relevant Transition Experiments

An important relationship in transition modeling is the experimentally

observed correlation between the momentum thickness Reynolds number and

turbulence intensity in the free-stream flow. Of those who have proposed a

functional approximation for this relationship (see 1.1), Abu-Ghannam and

Shaw [2] appear to have gathered the most comprehensive collection of

experiments to base this on. It is also the most recent. This correlation is

shown for zero-pressure gradient flow in Figure 1.2 and will be used both as

a development tool, and as one method to check the accuracy of our transition

calculations.

Although a large number of experiments have been conducted over the

years investigating transition and free-stream turbulence, only a few of them

can be used as specific test cases for a two-equation turbulence model. This is
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because most have not documented a sufficient amount of the free-stream

turbulence information. Typically, experiments have reported only a mean

value, or an upstream value of the turbulence intensity. Since Tue can be

related to ke, this is sufficient for the k equation boundary condition.

However, since the model requires boundary conditions for both k and e,

this information alone is inadequate. Since calculations have shown that the

value of ee does have a perceptible influence on the location of the computed

transition region, this cannot be neglected. At a minimum, one must know

the value of Tue at at least two locations. This is then sufficient to estimate _.

To the authors knowledge, the only work meeting these requirements are the

experiments of Blair and Werle [8-9,(10-12)], Rued [72,(73-74)], Wang

[91,(92-93)], and Abu-Ghannam [1].

Blair and Werle have investigated flow over a heated test section

where the total wall to free-stream temperature differences were about 10 K.

The effect of different levels of free-stream turbulence was found by

installing four different turbulence generating grids resulting in free-stream

turbulence intensities ranging from about .5-8%. All three components of

the normal Reynolds stress were documented over the length of the test

section. Tests included both zero pressure gradient flow, and flows with

constant acceleration.

Rued has conducted an extensive number of tests for both constant and

accelerating free-stream velocity conditions. Turbulence generating grids

provided initial turbulence intensity levels from about 0.8 to 11%, but only

if;2 and ¢2 components were measured (w '2 was assumed equal to v'2).

These were reported at various locations along the test section. The free-



29

stream air was heated and the test section cooled such that wall to gas

temperature ratios of from 0.55 to 0.84 could be investigated.

Wang conducted an experimental study of transitional boundary layer

flow with free-stream turbulence levels of 0.7 % and 2.0% and for a heated

test section of nearly uniform heat flux. Local heat transfer coefficients, skin

friction coefficients, profiles of velocity, temperature are reported. The

streamwise direction turbulence intensity was measured at several locations,

providing adequate data with which to determine the free-stream dissipation.

The data of Wang was also used in a recent study of mixing length transition

models, made by Park and Simon [60] which will provide an opportunity for

comparison later in this thesis.

Abu-Ghannam's [1] experiments were somewhat different than the

others with respect to the measurement technique and the experimental

results. The experiments were conducted over a smooth aluminum flat plat in

a wind tunnel of variable speed. The transition data was taken by

continuously monitoring the velocity at a single fixed point near the wall

while the tunnel speed was gradually changed. Free-stream turbulence

intensities ranged from .5 to 5%. Heat transfer measurements were not taken.

1.4 OUTLINE OF THE THESIS

This chapter has provided the basic aims and objectives of this thesis

and tried to place them in their proper perspective relative to the problem of

predicting external heat transfer on gas turbine blades: The importance of
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transition has been described, and the predominant factors influencing this

phenomenon introduced. An overview of techniques available to model this

kind of problem has been provided, and a specific literature survey was made

of previous attempts to use two-equation turbulence models in predicting

transition. Finally, the data currently available which is sufficiently complete

to provide an adequate basis for testing these models has been presented. A

brief description of the remaining chapters in this thesis will now be given as

a guide to the reader.

Chapter 2 will describe the mathematical representation of the

problem and the numerical procedure used to solve the equations. This will

begin by introducing the time averaged boundary-layer equations and the

unknown turbulence quantities that must be determined. Next a more

detailed description of k-e LRN turbulence models will be given with a

special focus on the Lam-Bremhorst [45] and Jones-Launder [36,37] models.

Finally, the numerical solution procedure will be described. This will

include an introduction to the Patankar-Spalding [61] solution procedure, the

near wall grid refinement strategy used, and the method used to specify the

initial starting profiles and boundary conditions.

In chapter 3, the prediction characteristics and capabilities of the Lam-

Bremhorst and Jones-Launder models will be carefully evaluated with

respect to transition on flat plates under the influence of free-stream

turbulence. This work will show the importance of both the initial profiles

specified, and the streamwise location where the calculations are started.

Also, the effect of different free-stream turbulence conditions will be

documented and compared with the recently developed correlation of Abu-
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Ghannam and Shaw [2]. Finally, the results of the evaluation will be

summarized to form the basis of improving the models in later work.

In chapter 4, the major objective of this thesis is addressed, ie. the

development of an improved approach to simulating transition within the

framework of k-e LRN turbulence models. As a basis for this, four topics

are initially considered. First, the method of Rodi and Scheuerer [66,67] is

evaluated in more detail. This method addresses some of the difficulties

described in chapter 3 and the results of this section provide motivation to

continue seeking for better methods. Next, a defect in the Lam-Bremhorst

model which adversely effects transition predictions for low free-stream

turbulence conditions will be described and a solution to the problem

explained. Third, the mechanism by which k-e models simulate transition is

explored in more detail and the results of chapter 3 clarified in this light.

Finally, the importance of stability considerations is briefly discussed and

the current limitations of k-e LRN models with respect to this explained.

The next section in chapter 4 is dedicated to describing the

modification which is proposed to improve the transition predictions. This

starts with an explanation of the basic characteristics desired, and then

provides a description of the actual modification chosen. The numerical

implementation is explained and a method for calibrating the additional

parameters introduced. The results of calibrating these parameters for the

Lam-Bremhorst model are then presented.

In section 4.6, calculations of simple flat plate flows are presented as

given by the modified LRN model of Lam-Bremhorst. These are compared

to the results previously presented in chapter 3 and a significant improve-
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ment demonstrated. In section 4.7, the application of the model to the Jones-

Launder LRN model is explained, the calibration of the new parameters

given, and the calculations also compared.

In order to clearly document the prediction capabilities of the new

method, chapter 5 presents a comparison between the new method and the

results of a large number of different experiments. The first section

considers experiments in flat plate, zero pressure gradient conditions, but

with turbulence intensities ranging from 1% to 9%. Data from three

completely independent sources is used. Next, experiments that have the

additional complication of acceleration are used. These experiments cover

turbulence intensities of from 1-11%, and provide cases with both constant

and strongly varying acceleration. Finally, the calculations are compared to

the experimentally determined heat transfer data from two different turbine

blades.

Chapter 6 provides closing remarks relative to the contributions made

by this thesis. Also, some comments about the direction future work might

best proceed are given.
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Figure 1.1 Cross-section of the flow around a turbine blade
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CHAPTER TWO

THE MATHEMATICAL REPRESENTATION OF THE

PROBLEM AND THE NUMERICAL SOLUTION PROCEDURE

2.1 THE BOUNDARY LAYER EQUATIONS

Since the focus of this thesis is on the thin viscous region near a solid

wall, the equations used in the analysis can be the simpler "boundary-layer"

equations. These equations are approximations which describe the

conservation of mass, momentum, and energy. To describe the turbulence

effects these equations will be solved in their time-averaged, but steady state

form. We also will neglect variations in the span-wise direction of the blade

or test section, and reduce the equations to their two-dimensional form.

Since velocities at certain locations around a turbine blade often approach

and sometimes exceed mach 1, and temperature variations can also be large,

in general we will not be able "to invoke incompressible, constant property

simplifications. Furthermore, the conversion of mechanical energy to

thermal energy through viscous effects cannot be neglected in the energy

equation. However, we will assume that Cp is constant in deriving the energy

equation. This assumption, while having only a very small effect on our

computed results, allows important simplifications.
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Since the derivation of the boundary layer equations can be found in

many standard reference books, it will not be repeated here. A more

important need is to show them as they are properly expressed in the

nomenclature and symbols that will be used throughout the remainder of this

thesis. In Fig. 2.1, a simple sketch of the geometry, x-y coordinate system,

and basic nomenclature is given. For a two-dimensional rectangular

coordinate system such as this, the conservation of mass and momentum can

be written in the following form.

_-_xpU) + _xpg) = 0 (2.1)

puOU _U dP ,_,, _U+ (2.2)

where U and V are the time averaged mean velocities, and u' and v' are the

instantaneous velocity fluctuations. The overbar "--" implies a time

averaged quantity, the prime a fluctuating quantity, and the expression

indicates a mass weighted averaging (see Cebeci and Smith [17]) where

p9 =pV+p-_' (2.3)

It is convenient for high speed flow to solve the energy equation in

terms of the "total" or "stagnation" enthalpy H, defined as follows;

U2
H=h+-_-" (2.4)
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Assuming that the specific heat is constant and the gas is ideal, the static

temperature to static enthalpy relationship, and the state equation are simply;

h =CpT (2.5)

P
p =_-_ (2.6)

Using these definitions, the total enthalpy equation can be written as;

pU_ x _H=__.{gt_I-I -- U[(1-p_ c3U+ - l.t(_"y) pu_'] } (2.7)pv_"_" Pr _y 9h'v'+

To solve these equations, we must specify the turbulent shear stress

and heat flux. To do this we def'me a "turbulent" or "eddy" viscosity, and a

turbulent Prandtl number such that;

-pu'v' = u t (_')

--;=, ut _)h
-ohv= (yyy)

(2.8)

(2.9)

For the purposes of this thesis, the turbulent Prandtl number will be assumed

constant and equal to 0.9. Although this is not in general true, it has been

found to be a reasonably good approximation for most situations and should

not detract from our major focus, which is the transition predictions. The

role of the turbulence model now becomes that of determining the correct

value of u t.
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2.2 THE TURBULENCE MODELS EMPLOYED

The purpose of this section is to clearly describe the mathematical

representation and implementation of the LRN k-e type turbulence models

used in this thesis. After providing a generalized description and outline of

all of the models currently proposed, the details of two relatively popular

models will be given and differences explained.

2.2.1 k-e Low-Reynolds-Number Turbulence Models

Although many different proposals have been suggested for

introducing LRN functions into the k-e turbulence model, Patel et al. [62]

have shown that it is possible to generalize these variations by writing the

basic equations in a manner to be described here. The basic relation def'ming

the turbulent viscosity is

k 2

u t = pC. f_tT (2.10)

where Cg is a constant, fg is one of the LRN functions to be described, and k

and _ are the turbulent kinetic energy and dissipation rate function

respectively. The top hat symbol has been placed over e so that differences

between the meaning of e used by the various models can be clarified. The
,0g

relationship between e as defined in eq. (1.7), and e, can be written as
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e= e +D, (2.11)

where in some models the quantity D is assigned to be a function of k. The

reason for the addition of the function D by these developers, is to provide a

means whereby the boundary condition in the e equation can be specified as

zero. More will be explained about this later.

The transport equations for k and e follow the pattern of equation

(1.6) and can be written as;

(2.12)

pu_. + pV_yy 3y J + k"
C f /_)U x2

{ 1 ll'ttk_"y) -PC2f2_} + E

(2.13)

Looking closely, one can see that contained within equations (2.10) to

(2.13) there are five empirical constants; C_t, C 1, C 2, ok, 6_, and five

empirical functions; f_t, fl, f2, D, and E. The five constants all pertain to

conditions far from the wall, and only small differences exist between

different models. They all have been introduced during the process of

simplifying more exact forms of these equations (which are derived from the

Navier-Stokes relations). The values for these constants are found by

recourse to certain limiting flow conditions where experimental data is

known, and to numerical optimization ( See for example Rodi [70]). The

values used in this thesis are those suggested as "standard" by Launder and

Spaulding [48]. They are given in Table 2.1.
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TABLE 2.1 The k-e Turbulence Model Constants

C_t

.09

C1

1.44

C2

1.92 1.0 1.3

Turbulent motions immediately adjacent to solid walls are significantly

influenced by the presence of the wall. Here the magnitude of the effective

turbulent viscosity becomes small, and the effects of the molecular viscosity

become important. Experimental work has shown that in some turbulent flow

situations there exists a common structure or behavior near the wall. Under

these conditions both the mean velocities and the measurable turbulence

quantities exhibit nearly universal behavior. The knowledge of this structure

has allowed the formulation and use of the so-called wall functions. These

functions algebraically bridge the near wall region and eliminate the need for

more expensive and time consuming calculations with a fine grid near the

wall.

Unfortunately, there are also many flow situations of interest where

this near wall similarity breaks down. Large pressure gradients and mass

transfer at the wall, for example, both result in significant alterations of the

near wall flow, thus wail functions cannot always be used. To incorporate

these effects into turbulence models, a variety of different suggestions have

been made. A well known example of one such modification for mixing

length type turbulence models is the Van Driest damping function [88]. The

purpose for the functions f_t, fl, and f2 is to provide a somewhat similar kind
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of modifying influence on the k-e model, thus extending the validity of the

equations clear through the viscous sub-layer to the wall. To do so, they are

made functions of one or more "turbulent Reynolds numbers", or the inner

wall coordinate y+. These are defined asfollows;

k 2

= _ (2.14)

Ry - 9 - (2.15)

y U_

y+- _ (2.16)

A good discussion of these functions is given by Patel et al [62] and the reader

is referred there for a discussion of each of these functions individually.

Here we will press on and consider the specific low-Reynolds-number

functions incorporated into two of the more popular models.

2.2.2 The Jones-Launder and Lam-Bremhorst Models

The specific LRN functions of the Jones-Launder model and of the

Lam-Bremhorst model as used in this thesis are given in Table 2.2. These

two models were chosen for closer evaluation in this thesis for a number of

reasons. First, they both have seen application to a variety of different flows

by a number of independent researchers. Furthermore, both have been

applied by previous researchers to predicting transitional flows on turbine

blades [66,67,90]. Second, when compared with other LRN k-e models, tests
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have shown both of these to be among the best at predicting the

characteristics of fully turbulent flow[62]. Third, they represent two

somewhat different approaches to introducing LRN modifications.

TABLE 2.2 The Low Reynolds-Number Functions used in the Jones-
Launder and Lam-Bremhorst models

f,

fl

f2

E

D

gw -boundary

condition

Jones-Launder Model

3.4

ex_([ 1 +.02Rt ]2]

Lam-Bremhorst Model

(1 - exp(-.0163Ry ))2 (1 + R2-_-0t)

1.0

1. - 0.3exp(-Rt 2)

2 [_I!)2

2 (a4_ _z
J

0

1. + (.055_3
tf J

1. - exp(-Rt 2)

0

0

* See Patel, Rodi, and Scheuerer [62]
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The differences between the models stem from two basic choices;

what dissipation rate variable to use, and how to functionalize fl_' Exactly at

the wall, the value of k must go to zero. However, it can be shown that the

dissipation rate defined in equation (1.7) does not. The correct boundary

condition for e is

(2.17)

For computational reasons, many models have avoided this boundary

condition by introducing a simple change of variables. By choosing a

function D (see equation 2.11) such that D ly__o= e l o , the boundary
A

condition for the variable e becomes zero.

The function D shown for the Jones-Launder model in Table 2.2 is one
A

possible choice which allows e to be specified as zero at the wall. The Lam-

Bremhorst model on the other hand introduces no such change of variables.

The original approach of Lam and Bremhorst was simply to apply the

boundary condition (2.17) directly. However, others have found that due to

the influence of the other LRN functions chosen, the computations are

relatively insensitive to this boundary condition, and the simpler condition

shown in Table 2.2 can be applied without any change in predictions [62].

Another significant difference relates to the turbulent Reynolds

numbers chosen to correlate f_t with. In the case of Jones-Launder, a single

parameter correlation with R t is introduced. This implies only an indirect

effect of the wall through the variables k and _. In contrast, the Lam-
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Bremhorst formulation makes fit a function of both R t and Ry, which

introduces a very direct dependence on the relative proximity of the wall.

The details of how each of the other functions were chosen can be

found in the original papers by Lam and Bremhorst [45], and by Jones and

Launder [37]. It is important to know that although some of the functional

dependence can by justified directly through empirical or physical

arguments, other choices were made add-hoe. This freedom to explore

different approaches coupled with the initial success that came from models

such as the Jones-Launder model, is one of the main reasons that so many

different models have been introduced in recent years.

Although others have explored the effect these differences have on

fully turbulent predictions, the work in this thesis is the first such attempt

known by the author to explore the effect these choices have on the transition

prediction capabilities.

2.3 THE NUMERICAL SOLUTION PROCEDURE

A number of excellent computational methods have been developed in

recent years to efficiently solve sets of two-dimensional parabolic partial-

differential equations. Because the purpose of this thesis is not related to

developing an improved solution algorithm, any of these methods could have

been used. However, the correct and consistent application of any method is

essential for the numerically computed results to be reliable. Thus the

purpose of this section is to discuss the numerical solution techniques and

procedures used in this development work.
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Based on the author's familiarity with the Patankar-Spalding solution

procedure [61] and it's common use in engineering applications, this method

was used throughout this thesis work. Since details of this algorithm can be

found elsewhere, only a summary will be given here by way of introduction.

Next, the method of near-wall grid refinement and the specification of the

streamwise direction step size will be discussed. This is important since

sufficient resolution of all spatial gradients is essential to any numerical

method in assuring that the solution is truly accurate. In 2.3.3, the approach

to specifying the boundary conditions and the initial starting profiles will be

described. And in 2.3.4, a few comments about some practical aspects of

representing the different LRN functions will be given.

2.3.1 The Patankar-Spalding Parabolic Solution Method

The solution method of Patankar and Spalding is based on solving the

governing equations in the "x, to " coordinate system, instead of the more

traditional "x,y" system. Here to is a non-dimensionalized form of the

stream-function coordinate • which von-Mises first suggested (see

Schlichting [78]). The utility of this transformation is two-fold. First, the

normal velocity V is elliminated from the equations and continuity is

identically satisfied. Second, the formulation allows the computational grid

to vary smoothly and naturally with the growth of the boundary layer. This

variation is regulated during the computations by appropriate control of the

entrainment of free-stream fluid into the computational region.
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As an example, the time averaged streamwise momentum equation can

be written in this coordinate system as;

0U _}U _} / _U_ 1 dP
0---_-+ bo_-_- _c_o_7-8_ oU ck (2.18)

where

b = m___.
• E (2.19)

9 0x+ut)
c - 9_ (2.20)

and co and _ are defined as;

o_=.-_
_E (2.21)

_ = [ f0YoUdy] x=constant (2.22)

The subscript "E" refers to the free-stream edge of the computational

domain, and/n_ is the entrained mass flow rate at the edge, which is

controlled as part of the computational procedure.

The finite differencing equations are developed by integrating the

appropriate transport equations over a small but finite control volume. To

do this, one assumes that over the extent of the control volume, the profiles

of the dependent variables behave in a certain linear fashion. The streamwise

derivatives are "up-winded", thus yielding an implicit set of coupled

algebraic relations. Since the resulting matrix has coefficients in the center
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three diagonals only, a very efficient tri-diagonal-matrix algorithm can be

used to solve these equations.

Over each forward step, the equations are decoupled from each other.

For example, when k is required in a source term in the e equation, the old

"upstream" value at that location is used. This choice requires that the step-

size in the stream-wise direction be kept small, and the sensitivity of the

results carefully checked to insure the accuracy of the solution. For most of

the calculations presented here, setting dx=.5*0 was found to be completely

adequate in satisfying this requirement.

A more detailed description of this entire method can be found in [61].

2.3.2 Near Wall Grid Refinement

In turbulent flow, the important viscous sublayer region is very thin

relative to the total boundary-layer thickness. It is also a region of large

velocity gradients. Thus to accurately approximate the solution of equations

(2.1)-(2.13), a refined computational grid must be used in this very near wall

region in order to properly resolve the important physical effects.

Conversely, in the outer regions of the boundary layer, gradients are

generally small because the velocity, enthalpy, and turbulence quantities

asymptotically approach their free-stream values. In this region, a relatively

coarse computational grid is sufficient.

In situations such as this, it is advantageous to use a variable grid. How

this was specified in this thesis will be explained here.
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In figure 2.2 a sketch of y direction control volumes and node

locations is shown. Note that for any grid of M1 nodes, there exist M1-2

finite control volumes within the computational domain. For the purpose of

generating a variable grid, it is useful to define a grid coordinate "_", in

terms of these node locations. At any node location J>l, Z can be defined as;

J-1.5
Z- M3 (2.23)

A common way to specify the actual grid location in terms of the grid

coordinate is to set

Y(J)
Y(M1) =zb (2.24)

where the exponent b must be greater than I to ref'me the grid near the wall.

One disadvantage of the simple relationship (2.24), is that when M1 is

fairly large (say on the order of 100), and b is set greater then 1 (say 3), the

variation in the widths of neighboring control volumes very near the wall

becomes quite large. This is detrimental to computational accuracy and

should be avoided.

To avoid the difficulty mentioned, and still refine the grid adequately

in the near-wall region, the following two-region relationship between X and

Y(J) was adopted.
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mz ; Z<Z1

aZ b + c ; Z>ZI

(2.25)

where at Z=Z1, the function is continuous through the first derivative, ie.;

rn_1 = a(Zl)b+ c (2.26)

= m = a b (ZI)b'l (2.27)Y(M1) _)Z

This procedure has Y(J) varying linearly with Z in the very near wall region

Z < ZI' but proportional to zb for X > ZI" Figure 2.3 is useful in depicting

this relationship and also in explaining the practical implementation of this

procedure.

To implement this procedure, three quantities must be specified; the

total computational boundary layer width Y(M1), the matching point in

terms of the grid coordinate ZI' and the exponent b. With this information,

equations (2.26)-(2.27) can be applied to yield;

where

)b_l]x

y(j) T1 [b (Z 1

Y(M1) =

rl[zb+(b-1)(Z 1)b]

; Z<ZI

; Z>Z1

(2.28)

1
11- (2.29)

1+ (b-1)(z1)b
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Equations (2.25)-(2.29) have all been represented in terms of the

normal rectangular coordinate y. However, as mentioned in section 2.3.1,

the Patankar-Spalding solution method uses the to coordinate defined in

equations (2.21) and (2.22). Thus, to implement these relationships using the

Patankar-Spalding solution method, equation (2.22) must be integrated in

terms of the initial starting velocity profile to yield the appropriate grid

distribution in terms of to.

For most of the computations presented here, M1 was set equal to 88,

_1=.1, and b -- 2.5. These settings gave approximately 15 control volumes

within the viscous region y+<10 of a fully turbulent boundary layer. Tests

showed that the grid thus specified was sufficiently refined to yield

essentially grid independent results.

2.3.3 Specification of Initial Starting Profiles and Boundary

Conditions

Since equations (2.1)-(2.13) are not valid at x=0, before they can be
,,.

solved, profiles for U, k, and e at some appropriate initial starting location

"xi" must be given. In addition, correct boundary conditions must be

continuously specified as the computations march forward in the streamwise

direction. Except for the specification of xi, the procedures adopted for

accomplishing this task will be explained here. Further discussion of this

aspect of the problem will also be given in succeeding chapters.
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Velocity:

For the velocity, we specify U---0 at y=0, and ,U=U e at y=Y(M 1). The

free stream velocity U e can in general vary with x, and so must be specified

in terms of the experimental data.

To approximate the variation of U with y at x--xi, a Pohlhausen

polynomial representation of the velocity profile was used, such that;

U A
_ee= 2(_)- 2(_) 3 + 4(_)4 + _- (_)(1 __)3 (2.30)

This requires an approximation for the local boundary layer thickness 8, and

an acceleration parameter A=82(OU/Ox)/_. The following steps illustrate

how this was accomplished;

i) Apply the method of Thwaites to determine 0 at xfx i. This requires

integration of the following approximate relationship;

02 0.45_ j_o- ij6 USdx (2.31)

ii) Calculate the local acceleration parameter _, defined as

02 OU
k- _ Ox (2.32)

and f'md the shear correlation S(_,) from the tabulated correlation

of Thwaites [85] (also found in White [94] pg 316, Table 4-8).
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iii) Iteratively solve the following two equations for A and 5. Note

that eq. (2.33) is the functional relation for S derived directly from

the Pohlhausen Polynomial.

S(_,) = ( 2 + A ) (2.33)

A=X(_) 2 (2.34)

A simple fortran program to accomplish this task is included in the appendix

of this thesis.

k and

The wall boundary conditions for k and e have been explained

previously in Section 2.2.2. In the free-stream, equations (2.12) and (2.13)

reduce to a set of coupled ordinary differential equations as all cross-stream

derivatives vanish. They are;

U¢dx -e, (2.35)

(2.36)

The specification of 1% and e¢ at any location x I is sufficient to determine

what the boundary values are at any other location x by integrating equations

(2.35) and (2.36). Alternatively, the specification of k c at two locations is
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also sufficient to allow one to determine the correct value of ee at any other

location. This is may be the situation when comparing with experimental

data. However, since experiments generally only report turbulence

intensities, k must be determined from the following relationship;

ke=l.5(Tue,wUe) 2 (2.37)

When _ is the only component measured, we must assume the turbulence is

isotropic, and the total turbulence intensity Tue, r appearing in equation

(2.37) (see eq. (1.2)) is replaced by the streamwise turbulence intensity Tu e

defined in equation (1.1).

In any case, once k e and e e are determined at our initial starting

location, equations (2.35) and (2.36) are simply integrated each step to

determine the correct free-stream value at the next streamwise location.

The specification of the initial profiles for k and e when starting in the

laminar region is a problem. Very little experimental data exists in the

literature to guide us in this choice. The only applicable work the author has

found is that of Dyban, Epik, and Suprun [24]. They report measured u--I'

values through a "pseudo-laminar" boundary layer at Rex- 6.2 x 103, and for

several different levels of free-stream turbulence. However, the limited

nature of the data presented makes it difficult to justify basing ones

calculations upon it. Previous workers have had to rely on add-hoe methods

with little more than the known boundary conditions and intuition to guide

them. One such practice is that proposed by Rodi and Scheuerer [66,67].

They propose to set
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k - ICe(_e_ ' n=2 (2.38)

_U
£=alk_"y , e>ee (2.39)

where x i is located such that Re0-100, and a 1 is an empirical function

correlated to the free-stream turbulence intensity.

The importance of knowing the correct initial profiles of k and £

depends entirely upon how sensitive the results are to these values. This is

one of the items not clearly documented in previous work and which will be

investigated in this thesis. Leaving the justification for the next chapter, the

practice adopted here is to apply equations (2.38) and (2.39), but set al=l,

and choose xi such that Re 0 < 25.

Total enthalpy:

The total enthalpy in the free-stream was assumed to remain constant

for all cases considered. At the wall, either the experimental wall

temperature, or experimental wall heat flux was related to the appropriate

enthalpy or enthalpy flux through equations (2.4)-(2.5) _

For flat plate flows the starting enthalpy profile was derived from the

approximate temperature-velocity prof'de relationship given below.

U

T = T w + (Te-T w) _ee
(2.40)
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Since each of the experimental data sets with which calculations were

compared had a small unheated starting length where the wall was assumed

adiabatic, T w was set equal to T e for these cases. The total enthalpy profile

was then simply backed out using equations (2.4) and (2.5). This procedure

is identical to that of Rodi and Scheuerer [66,67].

For the turbine blade calculations, which are started near a stagnation

point, this procedure was modified to allow the thermal boundary layer 6T, to

be different than the velocity boundary layer. The essence of this is to use a

simple estimate of the the stagnation point heat transfer coefficient as a means

of varying the starting value of 51..

Crawford and Kays [18] suggest that stagnation point heat transfer on a

two-dimensional cylinder of radius R can be estimated by;

where

and

hR .5 pr4 (2.41)
Nu a = "_- - 0.81 Re R

PUooR

Re R = bt (2.42)

k OT
qw =" _ y=o- h (T**-Tw).

(2.43)

If we assume that the temperature profile remains similar to equation (2.40),

but that it is stretched by the ratio 6T/8, we can rewrite eq. (2.40) as

T = T w + (T¢ -T w) _'[e y/br] (2.44)
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ll..

where the term __ y/St] implies that 8r has

At the wall we can now write that

replaced 8 in eq. (2.30).

and

_.yly=0 (Tw-Te) 8 0U= U e 81" c3y ]y=O (2.45)

k 80U

h-Ue _ _-'y ly=o (2.46)

For a Pohlhausen polynomial given by eq (2.30),

thus

__yU[ Ue Ay---o= _ [ 2 + _" ] (2.47)

h=-=_[ 2+ 6 ] (2.48)

Applying the definition of Nu R given in eq. (2.41) and solving for 81- we

finally arrive at;
R A

81,= _-_UR[ 2 +_] (2.49)

Equation (2.44) can now be directly applied by letting R be the local radius of

curvature on the turbine blade at the stagnation point. Since the starting

location xi is very near the stagnation point, we neglect any change due to this

initial offset and determine a corresponding total enthalpy profile by use of

eqs. (2.4) and (2.5). It should be noticed that since the velocities are all
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relatively low in this near stagnation region and also since this is only an

approximation, differences between total and static temperature have been

neglected.

Equations (2.44) and (2.49) are only simple approximations that were

developed for convenience of use in this thesis. Because of this they can not

be recommended as very accurate. However, since the stagnation point heat

transfer problem is not the focus of this thesis, it was deemed sufficiently

accurate for the work considered herein. Others have developed more

accurate, albeit more complicated procedures which can incorporate the

effects of free-stream turbulence and compressibility on the estimation of the

stagnation Nusselt number. One such method that is recommended is the

procedure developed by Hylton et al. [34], which is a modified form of the

Miyazaki and Sparrow approach [54].

2.3.4 Numerically Representing f_ and fl

Near the wall, the LRN functions fit and fl adopted by Lam and

Bremhorst become very small and very large respectively. In fact, the

function fl is actually singular at y--0. As a result, computational difficulties

can arise if these functions are not properly represented. A typical result is

that the calculation will "crash" when numbers either larger or smaller than

the limits of the computer are encountered in computation.

To avoid these problems a very small number was introduced at

appropriate places in the numerical representation of the functions. This

practice was also followed in the source terms in the k and e equations which
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have a k in the denominator. For the computations presented in this thesis, fix

and fl were represented as follows;

f_t=(1- exp(-.0163Rt-s)) 2 (1 + R-_20 ,)

(2.51)

where s = 10 -l°.
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Figure 2.1 Transitional flow developing on a flat plate with free-

stream turbulence
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CHAPTER THREE

EVALUATING THE TRANSITION PREDICTION

CHARACTERISTICS OF TWO LRN k-e MODELS

3.1 OBJECTIVES OF THE EVALUATION

In this section the results of a sequence of computational tests will be

presented. The purpose of these tests are to help answer some specific

questions about the transition prediction characteristics of k-e LRN

turbulence models. Those questions and an explanation of each is given here

by way of introduction.

1. How important to the transition predictions is the specification of the

initial profiles of k and e ?

Since little is known about the actual behavior of the k and e profiles in

the pre-transition "pseudo-laminar" boundary layer developing with free-

stream turbulence, previous developers have had to rely on what are

essentially "ad-hoc" methods to specify these profiles. The relative

importance of this aspect of the problem needs to be determined if consistent

and accurate predictions are to be made.
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2. How important to the transition predictions is the exact location at

which the calculations are started?

In some ways this question is an extension of question 1 with an

additional factor, the velocity profile, being tossed in. Prior to transition, we

know the velocity profile behaves at least approximately like the profile in a

simple laminar boundary layer. It is somewhere in this region that a starting

point for the computations must be chosen and initial profiles specified.

Since there has been no consistency among previously published work

relative to where in this "pseudo-laminar" boundary layer the computations

are started, the relative importance of this question also needs to be

determined if consistent and accurate predictions are to be made.

3. What are the quantitative differences in the transition predictions when

the free-stream turbulence varies and how do these predictions

compare with a well known correlation?

Previous work has clearly established that k-e LRN turbulence models

simulate the correct qualitative trends, ie. a continuous transition from

laminar to turbulent flow, the onset of which moves upstream with

increasing free-stream Tu. However, a systematic documentation over a

broad range of Tu, and a quantified comparison of these predictions with

known correlations has not previously been performed. Furthermore, a

specific comparison of two different LRN models with respect to these

predictions has not been available. This information is essential in
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determining the reliability of the models as they now stand, and in guiding

future modeling efforts aimed at improving the calculations.

In each of the following sections a description of, and the results from

a number of computational tests designed to help answer these questions are

given. In each case, both the Jones-Launder model and the Lam-Bremhorst

model are considered.

3.2 SENSITIVITY TO STARTING PROFILES OF k AND e

Equations (2.38) and (2.39) describe the initial profile specification of

k and e as suggested by Rodi and Scheuerer. The nature of these equations is

such that they also provide a convenient way to vary the initial profiles of k

and e. For example, choosing n large, reduces the k profile, while setting al

large, increases the magnitude of the e profile. Since increasing e tends to

decrease k, the combination of specifying both n and al as large yields a

starting profile with essentially no turbulent kinetic energy except at the free-

stream edge.

To evaluate the sensitivity of the calculations to the specification of

these profiles, calculations were performed for the following conditions but

with two distinctly different starting profiles and at two different starting

locations.

* Tue = constant - 3.00 % ( ee was set very small )

* dP/dx -- 0 ( Constant Velocity )

* Flat Plate ( No Curvature )
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The two profiles considered correspond to n=2, al--.375 (the recommended

values of Rodi and Scheuerer at this Tue), and n---8,a1=2.0. The two starting

locations were Rex -- 2.27 x 104 and Rex --1.0 x 103. The value of Rex = 2.27

x 104 was chosen because it corresponds to Re 0 =100, which is the starting

location recommended by Rodi and Scheuerer. When using the Jones-

Launder model, which uses the modified dissipation variable 8, eq. (2.39)
A

was slightly modified by removing the restriction e > Be. This allowed e to

decrease to zero at the wall.

To represent the calculated transition process, the coefficient of

friction (Ct) is plotted vrs. Reynolds number based on x. This was done

because excellent correlations of Cf are available for both the laminar and the

fuUy turbulent regimes, which when compared to, offer a clear reference

with which to appraise the transition predictions.

Figures 3.1-a and 3.1-b are plots of the calculated variation in Cf vrs.

Rex for the four test cases described and using both LRN models.

Examination of these figures leads to the following general conclusions valid

for both models;

* At any given starting location, minimizing the starting kinetic

energy profiles results in the onset of transition beginning at the

farthest downstream location.

* The sensitivity of the transition predictions to the initial profiles of k

and e decreases as the starting location moves upstream, eventually

becoming independent of these profiles.
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Taken together, these observations yield another important conclusion about

these tests.

Appropriate specification of initial profiles at Rex =2.27 x 10 4

(where A and B were started) would yield transition predictions

identical to either of those which were started at Re x = 1.0 x 103 (C

and D). However, it is not oossible to specify any profiles which,

when starting the calculations at Rex =1.0 x 10 3, would yield

transition predictions identical to either of those which were started

at Re x =2.27 x 104.

This last conclusion is quite significant in light of comparisons with

experimental data that will be presented later. It stems from the transition

process (as simulated in these models) being strongly controlled by the

transport of k into the boundary layer. By moving the starting location

upstream, you effectively increase the area over which k will have been

diffused and convected into the boundary layer before reaching any

particular downstream location. The next set of tests will further clarify this

point.

Although the above mentioned conclusions can be applied to both

models, obvious differences between the transition predictions also exist.

Because the differences between e and g mean that the starting profiles as

applied to the two models are not exactly the same, some care must be used in

comparing the two results directly. However, it is quite clear that the Jones-

Launder model tends to predict transition further downstream than the Lain-
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Bremhorst model. Tests to be presented in the succeeding sections will be

beneficial in clarifying these differences also.

3.3 SENSITIVITY TO THE STARTING LOCATION

To further explore the sensitivity of the predictions to the initial

starting location, a set of calculations were made with identical initial

profiles (scaled on 8) but at different starting locations. The basic conditions

were the same as the calculations presented previously in section 3.2, ie.

Tue=3%, dp/dx=0, flat plate. The initial profiles for k and _ were specified

using equations (2.38) and (2.39) but with n-8, al-2. These are the same

specifications used in runs "B" and "D" in Figure 3.1. Recall that this will

yield transition at the farthest downstream location possible.

Figures 3.2-a and 3.2-b show the results of these calculations. The

results shown further illustrate how strongly the transition predictions are

dependent on the initial starting location. For the Lam-Bremhorst model at

this free-stream turbulence level, the location of transition is strongly

dependent on starting location for Rex,i >103 , but basically independent for

Rex,i < 103. In contrast, the Jones-Launder model calculations show

differences until the starting location is reduced to about Rex,i = 102 , and

even then a close inspection reveals a very slight down-stream shift when

compared to Rex, i - 10 I. Since the figures are plotted using a logarithmic

scale, the actual distance between these starting locations is of the same

magnitude as this small shift.

The difference between the models in this respect is apparently due to

the direct influence of the wall introduced in the Lam-Brernhorst model by
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using Ry as well as R t in the f_ function. To justify this assertion, consider

the following.

A weU known exact solution to the laminar boundary layer equations

with constant free-stream flow is the Blassius solution. This solution is

expressed in terms of a similarity variable 11 defined as;

Y (3.1)

The inner wall coordinate y+ defined in eq. (2.16) can be expressed in terms

of tl by substitution of eq. (3.1) to eliminate y. Further rearrangement

allows y+ to now be expressed as

y+ = .57611 (Rex) 1/4 (3.2)

Alternately, if we remember that for a Blassius profile, 0 =.664 _]x)x/u e ,

we can write;

y+ = 11",4.5 Reo (3.3)

The turbulent Reynolds number Rey

terms of y+ as

Rey = y+ k_-

where

defined in eq. (2.15), can be written in

(3.4)

k

k+ = u-'_ (3.5)

It is now possible to see how for a Blassius boundary layer, the Lam-

Bremhorst formulation for f_t can be written in the following ways;
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20.0
f0 = (1 - exp[-.0163 k+rl N/.5 Re0 l) 2 ( 1 +--_et ) (3.6)

(1- xp[-.o095k+n (R x) /41)2(1 +2R 0) (3.7)

Thus in the laminar region when a Blassius profile is a reasonable approxi-

mation, the magnitude of fg at any similar location is a function of the

Reynolds number. For low Reynolds numbers fg is reduced, limiting both

the production and diffusion of k in the boundary layer. This is why the

transition predictions of the Lam-Bremhorst model become insensitive to the

starting location as Rex,i becomes small. In contrast, the Jones-Launder

formulation introduces no such direct dependence.

3.4 SENSITIVITY TO FREE-STREAM TURBULENCE

The next set of computational tests consider the effect that different

levels of Tu e have on the transition predictions. The conditions considered

are once again flat plat, zero pressure gradient flow, and the computations

are all started at Rex,i=103. The initial profiles are specified as per equations

(2.38) and (2.39) with n=8, and a 1 -- 2.0. Calculations were done for free-

steam turbulence intensity levels ranging from 1.0 % to 6.0%. Free-stream

dissipation rates were specified low enough for the decay in Tu e to be

negligible. Figures 3.3-a and 3.3-b show the results of these calculations.
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The first thing to be noted is that a calculation with Tue=l% is not

shown for the Lam-Bremhorst model. This is because transition to a

turbulent state was not predicted by this model for Tue=l%. This failure was

also mentioned by Rodi and Scheuerer [67], although they imply that the

result seemsphysically plausible. It is clear from these tests that the reason is

related to the LRN formulation chosen by Lam and Bremhorst since the

Jones-Launder model does predict transition under these conditions.

In general terms the qualitative characteristics of the variation of Cf

during transition seem reasonable for both models with the onset of

transition moving progressively upstream with increasing Tu e as it should.

However, significant differences between the predictions of the two models

occur at higher Tu e where the Lam-Bremhorst model shows a much

smoother and more gradual transition region than the Jones-Launder model.

The previously noted tendency of the Lam-Bremhorst model to predict

transition earlier than the Jones-Launder model is also quite apparent.

In figures 3.4-a and 3.4-b the momentum-thickness Reynolds number

at the start (Re0,s) and the end (Re0,E)of transition are plotted and compared

with the correlation of Abu-Ghannam and Shaw [2]. Here, the beginning and

end are defined as the point of minimum and maximum Cf respectively.

From figure 3.4-a, we can once again see that both models predict the correct

qualitative trends, but the onset of transition is predicted too early for both

models. At Tue=5%, both models are predicting transition occurring at

Re0,s< 150. However, the Jones-Launder model clearly does better than the

Lam-Bremhorst model.

t
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The results shown in figure 3.4-b begin to quantify an important

deficiency apparent in all of the tests. The region over which transition is

predicted to occur is always very short. As a result, both models consistently

predict a Re0, E of less than 50% of the correlation.

3.5 SUMMARY

A series of numerical experiments have been performed to evaluate

the transition prediction characteristics of the Lam-Bremhorst and the Jones-

Launder LRN k-e turbulence models. Both models showed, as expected, the

ability to correctly model the basic qualitative aspects of transition, ie. the

continuous transition from laminar to turbulent flow, the onset of which

moves upstream with increasing Tu e. The answers to three specific questions

have also been sought through the completion of these tests. The results

indicate the following conclusions as answers to these questions.

1. The predicted location of transition is moderately sensitive to the

initial profiles specified for k and e. Lower k and higher _ profiles

yield transition occurring somewhat farther downstream. This

sensitivity decreases with decreasing Rex,i , especially for the Lam-

Bremhorst model.

2. The prediction of transition is very sensitive to the location at which

the calculations are started. The reason for this is attributed to the

basic process which must occur for the models to simulate transition,

ie the transport of k into the boundary layer. The extent to which this

can occur is largely a function of the distance over which the
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calculations have proceeded. However, this sensitivity does appear to

decrease with decreasing Rex,i , especially for the Lam-Bremhorst

model. The differences in this aspect are clearly related to the LRN

functions employed.

3. For calculations started at low Rex,i (where the sensitivity to the initial

profiles for k and e is small), transition is predicted at unrealistically

early locations. Also, both models predict transition lengths

significantly shorter than experiment.
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CHAPTER FOUR

DEVELOPMENT OF AN IMPROVED APPROACH TO

SIMULATE TRANSITION WITHIN THE FRAMEWORK OF

THE k-E LRN TURBULENCE MODELS

The results presented in chapter 3 reveal significant problems in directly

applying k-E LRN models to predict transitional boundary layer flows.

However, the potential of this approach is also apparent, and it clearly seems

wise to pursue ways to eliminate these problems without abandoning the basic

technique. One way of seeking improvement is to examine the LRN

functions themselves, looking for alternative ways to specify these functions

which will yield both the desired fully-turbulent near-wall behavior and also

improved transition predictions. Another way is to seek simple

modifications or empirical constraints that would provide a means of

eliminating the deficiencies, without changing the basic LRN models

themselves. This is the way that improvements are sought in the work to be

presented in this chapter. Although less elegant or general than a new

formulation of LRN functions might be, it is nonetheless quite practical, and

excellent improvement will be shown by the modifications developed.

In working to improve the transition predictions, we are somewhat

hampered by ignorance about certain aspects of the problem's physics. This

difficulty, mentioned earlier, centers around the lack of experimental data

for k and e profiles at locations upstream of transition. Although our k-e
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models require this as input, insufficient knowledge is currently known about

the values of these turbulent quantities within the quasi-laminar region prior

to the start of transition. Thus, in searching for ways to improve on the

current models, it seems we must be content (for the present) with

"reasonable" profiles in this region, and try to minimize the sensitivity of the

predictions to small variations in them.

We will initially work with the Lam Bremhorst model. This model was

chosen for basically three reasons; first, the favorable results of the study by

Patel et al. [62], second, the previous use of this model by Rodi and Scheuerer

[66,67] in working on this same problem, and third, the simpler form of the

source terms present in the k and e equations (a result of the dissipation rate

variable used in this model). Once an approach has been developed, the

application to the Jones-Launder model will be described and tested.

4.1 PRELIMINARY COMMENTS

Before proceeding it is valuable to review in more detail the method

for predicting transitional flows developed by Rodi and Scheuerer [66,67].

This work has been mentioned numerous times in this thesis, and has been a

rich source of valuable information on this problem. With that method as

additional background, we will then outline the desired characteristics to be

sought in a new approach to improving the predictions.
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4.1.1 Method of Rodi and Scheuerer

Rodi and Scheuerer [66,67,77]. have proposed a procedure to predict

transition using the Lam-Bremhorst LRN model. They apparently

recognized some of the problems which have been discussed in Chapter 3 and

in essence, recommend a-particular procedure to deal with them. In

developing their method they chose to begin all calculations at a starting

location corresponding to Re0=100. To determine where this location is in

the streamwise direction, they use the method of Thwaites ( see eq. (2.31)).

They also proposed particular forms for the k and e profiles - eqs. (2.38) and

(2.39) - which seemed reasonable, and which gave them a simple empirical

parameter "al" with which to tune their results. The coefficient al was

correlated with free-stream turbulence intensity and it's value varies from

about 0.1 to 2.0 [77].

This method effectively addresses two of the problems which were

discussed in chapter 3, ie. the sensitivity to starting profiles and to starting

location. However, the importance of the starting location remaining

consistent was apparently not recognized because some of their later

computations against experimental data were not started at Re0=100. Also,

the problem of transition length is not addressed in this procedure.

Figure 4.1 shows results obtained by this author when following this

procedure for a range of Tu e of 1.5 to 6%. The conditions are identical to

those considered in section 3.4, ie. constant velocity flat plat flow. Since the

Lam-Bremhorst LRN model is employed, we can compare these calculations

to Fig. 3.3-b. The major benefit is the downstream shift in the predicted start
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of transition for the higher turbulence intensities. This yields values of Re0,s

which are in better agreement with the correlation of Abu-Ghannam and

Shaw. Unfortunately, the transition length is actually somewhat shortened,

causing that aspect of the prediction to deteriorate. Note that by examining

Fig. 3.2-a, this characteristic appears to be related to the starting location

being relatively far down-stream. This downstream starting location is also

the reason why varying the initial profiles yields improved predictions.

For turbine blade calculations, where the transition length can

sometimes extend over most of the blade surface, the failure to predict the

transition length is very significant. In addition, it may not always be

possible to accurately specify the exact location where say, the momentum

thickness is equal to 100. Thus, the result of the evaluation illustrated here,

was to conclude that improved methods should still be sought.

4.1.2 Desired Characteristics

The results presented earlier provide evidence that the models tested

need considerable improvement before quantitatively correct predictions of

transition can be made using LRN k-E models. In seeking to improve the

prediction capabilities, we should consider the specific characteristics that

we desire in our model. Based on our previous evaluation, we will seek the

following two characteristics as a minimum standard to be achieved for flat-

plate zero pressure gradient flow.

1) Transition starting and ending in good agreement with the correlation

of Abu-Ghannam and Shaw.
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2) The freedom to start the calculations at any location within some

reasonable area without affecting the transition predictions.

4.2 A SIMPLE IMPROVEMENT TO THE LAM-BREMHORST

ftt FUNCTION

4.2.1 The Problem and it's Cause:

In section 3.4 it was pointed out that the Lam-Bremhorst model did not

predict transition when Tu e was reduced to 1%, although the Jones-Launder

model did. Since experimental evidence clearly shows that the location of

transition is sensitive to free-stream turbulence levels significantly lower

than 1%, a correction for this is needed.

To determine the cause, a series of computations were made at

progressively lower turbulence intensities. During each of these runs, the

calculated profiles for k, e and other related turbulence quantities were

printed out at regular intervals. Analysis of these profiles revealed a simple

explanation for the deficiency; the value for fg was being unrealistically over

predicted (>> 1) under certain conditions that could develop as the computed

boundary layer moved toward transition. Furthermore, these conditions

only occurred when Tu e was low. To explain, we need to consider more

closely the two parameter Lam-Bremhorst formulation for f_t.

The function fg is introduced in k-e LRN models as a means of directly

reducing the turbulent viscosity in the near-wall region (see eq. (2.10)).

Outside of this region, it's value should be unity as near-wall effects are not
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present. Thus in no situation is it intended to have a value outside of the

range 0 to 1. Under fully turbulent conditions, this is always the case for the

Lam-Bremhorst model, as well as all other proposed formulations.

However, in the Lam-Bremhorst formulation, if the behavior of k and e does

not follow the near-wall pattern, as may be the case during transition, it is

possible for f_ to become very large. To illustrate this, we re-consider the

equation for f_t given below.

f_t= (1 - exp(-.0163Ry ))2 (1 + R2--_0t) (4.1)

Under normal conditions near a wall, Ret and Rey have the following

approximate relationship for y+ > 30 [62],

Ret = 2.5 Rey (4.2)

If Re t is say 150, then Rey -- 60 and the value for f_t would be approximately

0.44. However, if a situation develops such that say Ret=l, and Rey = 60,

then f_t would be equal to 8.2. In analyzing the results of the tests mentioned,

values for f_t as high as 300-400 were found!

To arrive at this situation, a local imbalance between k and e must

occur where e is higher relative to k than normal. The high f_t then adds to

the problem by unrealistically changing the various source terms in the k and

e equations. Numerically, this leads to an extreme imbalance in the

equation source terms where the production of e is much greater than the
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destruction. This effectively destroys any turbulent kinetic energy that would

otherwise have been transported further into the boundary layer.

In summary, although the problem appears to have both numerical and

mathematical aspects, the root cause is the unrealistic f_t predictions, and this

can been handled in a simple way to beexplained next.

4.2.2 A Solution

To eliminate the problem, all one must do is prevent fix from becoming

too large. The simplest solution is to set

fix= min ( fix,LB, 1.0) (4.3)

where fix,LBrefers to eq. (4.1). However, when testing this at Tu e =.5%,

although transition was predicted, the predictions were still being affected,

preventing the proper correlation of a transition modification which will be

introduced later. A stronger limitation was therefore introduced in the

following manner,

fix = min(fix,LB, 1.0, .5 + .0025"R t) (4.4)

A plot of fix vrs. Re t for a fully turbulent flow, as shown in fig. 4.2, shows

that this simply places a more stringent limitation on how large f_t can get

extremely close to the wall. Since any restriction which remains above the

fully turbulent behavior will not affect the fully turbulent calculations, the
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particular form chosen is somewhat arbitrary. Equation (4.4) was chosen

because it was simple, and because it was sufficient to allow proper

correlation of the transition model to be introduced. It must be remembered

however, that this choice does not affect the fully turbulent predictions, and

thus lies entirely within the realm of a modification to improve transition.

Furthermore, it turns out that this change has no effect at aU on the transition

predictions for Tue > 2%, and is only really significant for Tu e <1.5%.

The modified fl_ function of eq. (4.4) is used for all subsequent Lam-

Bremhorst calculations in this thesis unless otherwise specified.

4.3 THE MECHANISM BY WHICH THE MODEL SIMULATES
TRANSITION

Before starting to consider ways to improve the transition prediction

characteristics of the model, it is important to consider carefully how the

process occurs in the model as it stands.

Figure 4.3 shows the typical development of the turbulent kinetic

energy profiles as the simulated flow proceeds from a laminar to a turbulent

state using the Lam-Bremhorst model. Initially, the kinetic energy profile is

monotonic, increasing slowly from zero at the wall, to 1% at the boundary.

As the calculations march downstream, turbulent kinetic energy from the

free-stream is convected and diffused into the boundary layer. As this

continues, the production term in the model, Pk=_tt(OU/Oy) 2, starts to

become significant. This in turn increases the local value of k, and thus _tt .

This process feeds on itself, causing the rapid increase in k shown. Note that

a large overshoot initially occurs, which then slowly decays until the
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parameters achieve a relatively stable state due to the low-Reynolds-number

functions and the wall boundary conditions.

This process is initially controlled by the transport of k into the

boundary-layer from the free-stream. This is why these models are not

useful in predicting transition when the free-stream is perfectly quiescent. It

also explains to a large extent why the predictions are so sensitive to the

initial starting location. The further upstream you begin your calculation,

the larger the area over which k is diffused and convected, and thus the

quicker transition is initiated. However, the simple transport of k into the

boundary layer is only the necessary first step, for it is the interaction of this

influx of k with the non-linear source terms in the k and e equations that

provide the real driving force.

The key source term in the transition simulation is the modeled

production term in the turbulent kinetic energy equation. (Note that the use

of the words "production term" has been used rather loosely here to refer

only to the quantity in the model, not a term in the exact form of the k

equation.) Only as this term becomes larger than the dissipation can local

values of k increase and exceed the free-stream value. This is the process

which, in the model, simulates the amplification of free-stream disturbances

and the resulting eventual transition to a turbulent state. It seems logical

therefore to examine ways to modify the behavior of this term during the

simulated transition process in order to improve the predictions.
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4.4 STABILITY CONSIDERATIONS

The actual physical process by which an initially laminar boundary

layer undergoes transition to a fully turbulent state is very complex, but it's

onset is inseparably tied to stability considerations. Fundamental to the

process is the response of the flow to the introduction of small disturbances,

from whatever source. Under some conditions, a disturbance will decay, its

small energy being absorbed into the mean flow. Under other conditions, a

disturbance will be amplified, and energy with be extracted from the mean

flow to feed this growth. It is only under these "unstable" conditions that the

onset of transition can occur.

Linear stability theory gives some insight into the conditions under

which a boundary layer becomes unstable. Solutions to the well known Orr-

Sommerfield equation for a Blassius velocity profile yield a critical

momentum thickness Reynolds number below which infinitesimal

disturbances will not be amplified (commonly quoted as 163 due to an

approximate solutions, more accurate solutions have shown it to be equal to

201, see [78] pg. 469).

Numerous experiments have shown that under the influence of high

free-stream turbulence, transition can occur at Ree even less than this

stability limit [2]. This is presumably due the nonlinear behavior which the

high Tue introduces. However, after analyzing the data available to them,

Abu-Ghannam and Shaw felt justified in presuming a lower limit, as their

data seems to flatten out as the Tu e level increases (Although this has been

disputed by Rued and Whittig [73]).
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The LRN functions chosen by various researchers have all been

modeled after data taken from fully turbulent conditions. As a result,

stability considerations are not directly a part of k-e LRN turbulence models.

The k and e equations are simple advection diffusion equations with a

particular set of nonlinear source terms. However, in a sort of indirect way,

when applied to boundary layer flows they can mimic some aspects of

stability. This comes through the nature of the near wall effects on the source

terms.

An analogy that is useful to think in terms of here is the following.

Consider the well known near waU behavior of a turbulent boundary layer.

Descriptions of it's structure generally refer to at least three regions; the

viscous sublayer immediately adjacent to the wall, the outer turbulent "law

of the wail" region, and the so called buffer region in between. Transposing

in our minds the streamwise x coordinate with the cross-stream y coordinate,

we see the following correspondence.

developing laminar boundary layer ¢_ viscous sublayer

transitional region ¢:_ buffer layer

turbulent boundary layer ¢:_ turbulent "law of the wall" region

When the boundary layer thickness is very thin, such as is the case at low-

Reynolds numbers, the outer edge only extends out to a relatively small y÷.

Thus the LRN functions designed to simulate the proper viscous sublayer in a

turbulent boundary layer, also damp out any turbulent production which
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might otherwise occur in the laminar low-Reynolds-number boundary layer

(due to the influx of turbulent energy from the free-stream).

This correspondence between two different phenomenon is the basic

reason why all LRN models are able to mimic the correct qualitative aspects

of boundary-layer transition with free-stream turbulence as described in

chapter 3. However, because of the important time dependent nature of the

stability aspects of boundary-layer transition - for which there is no analogy

in a steady-state turbulent boundary near a wall - it is not particularly

surprising that deficiencies exist.

4.5 A MODIFICATION TO THE PRODUCTION TERM

After exploring a number of different alternatives to improve the

model, one method was found to be fairly successful. The method focuses on

two ideas developed earlier in this thesis. The first is that some means of

incorporating stability considerations into the calculational procedure must

be provided. The second, related to the first, is that the process by which the

model simulates transition, once started, must proceed at a finite rate and in

accord with experiment. When translated to practical implementation within

a LRN turbulence model, this implies the following;

(1) Since the production term "Pk" is the term in the model which

simulates the amplification of perturbations, below some critical

momentum thickness Reynolds number (Re0,c), The production term

in the k equation should always be insignificant.
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(2) The rate at which Pk can change must be assumed to have some finite

limit.

The purpose of this section is to describe the development of these

ideas into a practical engineering model:

As a sidelight, it may be interesting for the reader to consider the

harmony between the approach to be developed here and the basic idea

suggested by Maslow when he writes ".., a successful predictive scheme (for

transition) would require, as a minimum, not only a critical value of the

Reynolds number, but also some nonlinear dependence on an amplitude

parameter..." [50, italics added].

4.5.1 Applying a Stability Criteria

As a first step in developing these ideas, a number of calculations were

made with the following stipulation. If the calculated momentum thickness

was less than 162, the production term in the k equation is arbitrarily set

equal to zero. The value of 162 was chosen as this is the lower limit which

Abu-Ghannam and Shaw use in their correlation. This effectively prevents

the magnitude of the turbulent kinetic energy from ever exceeding the free-

stream value when Re0<162. However, it does not prevent the transport of k

into the boundary layer, which by itself will influence the flow to some

extent.
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Figure 4.4 plots the streamwise development of Cf for four different

free-stream turbulence conditions as calculated both with and without this

modification. (These conditions were modeled after the experiments of

Blair[ll], but the experimental results will not be compared at this point.) A

number of very interesting things are illustrated in this figure. First, the

location of transition in each case has been shifted downstream such that the

computed values of Re 0 at the start of transition are now all fairly close to the

predicted value using the correlation of Abu-Ghannam and Shaw. This is

also illustrated in figure 4.5. Second, for the higher turbulence cases, it is

clear that despite setting Pk=0, the effect of high free-stream turbulence does

influence the boundary-layer prior to transition. Third, The length of

transition is as short or even shorter than the unmodified calculations.

It may be recalled that, excluding the effect of high free-stream

turbulence on the laminar boundary layer.shown here, tests of the method of

Rodi and Scheuerer showed very similar results. However, there is one

important difference which is illustrated in figure 4.6. In contrast to the

method they propose, which is limited to starting at a very specific location,

this procedure has yielded results virtually independent of the initial starting

location for Rex, i < 2.3 x 104. This also implies that the results are

independent of the k and e starting profiles in this region.

4.5.2 Limiting the Growth Rate of the Production Term

The turbulent kinetic energy equation used in our numerical

calculations (eq. (2.12)) is derived through various modeling assumptions

from a more exact form. For fully turbulent flow where the boundary-layer
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assumptions are valid, the production term in the model corresponds to the

production term in the "exact" equation as follows.

--r-, [ OU "_ OU "_2 k 2
(4.5)

The success of k-e modeling has clearly verified that this approximation is

quite good in many situations of interest. However, in a "pseudo laminar",

developing transitional boundary layer - where experiments show a complex,

three-dimensional development characterized by increasingly frequent

"bursts" of local turbulence production - there is no justification to assume

that the "exact" term above (the term on the left) together with the dissipation

e, are the only source terms that are significant. Thus from a modeling

standpoint, there is no compelling reason precluding us from introducing

modifications in our numerically represented production term in order to

improve transition predictions, as long as the fully turbulent form is not

changed. Furthermore, the process by which small disturbances are

amplified in an unstable boundary layer is time dependent, where as our

equations are in a steady state form.

With these things in mind, it seems reasonable to consider improving

our predictions by introducing a modification to limit the growth rate of the

production term. This would allow us to leave the fully turbulent form of the

equations undisturbed, and yet introduce a time dependent modification to

slow down the transition simulation. The time scale would simply be related

to the local velocity.
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Preliminary tests with a number of

but flexible representation that worked quite well was the following;

_Pk,-l
"_"J max = A *Pk + B

formulations showed that a simple

(4.6)

where A and B are empirical parameters. The dependence of the linear term

on Pk itself is arbitrary, being suggested in analogy with reaction rate theory,

but was found to work quite well. The need for two independent parameters

however, stems directly from wanting to predict both the start and the end of

transition at the correct location.

Figure 4.7 illustrates the benefits that introducing each of these ideas

has had on the transition predictions. The heat transfer data being compared

is from the tests of Blair[11]. Note that the unmodified prediction yields

transition too far upstream, introducing the stability criteria shifts it

downstream but doesn't effect the error in the transition length, but addition

of the growth rate limitation provides a very excellent representation of the

data. However, this calculation is only preliminary, and it still remains to be

shown whether the empirical parameters can be properly correlated to yield

consistently accurate predictions over a wide range of free-stream turbulence

conditions.

4.5.3 Numerical Implementation

At this point, a brief explanation as to the numerical implementation of

eq. (4.6) may be beneficial. We first define the following;
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dx"

PK(j,x) •

U j:
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The streamwise location at the current point in the calculation

The step size in the streamwise direction

The computed positive source term in the k equation for the jth

control volume and at streamwise location x

The local streamwise velocity at the jth control volume

To compute the value of "PK(j, x+dx)" to be used over the next step in

the solution; we implement the following (written in pseudo fortran)

If Re 0 < Re0, c then

PK(j,x+dx) =0

else

PK(j,x+dx) = PK(j,x) + min[ gt_,_yyj -

endif

PK(j,x), APk,max]

where

APk,max = (A*PK(j,x) + B )dxuj (4.7)

For convenience, this modification will be referred to by the acronym

"PTM" (for Production Term Modification)•
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4.5.4 Determining the Transition Parameters A and B

Method of Calibration

A series of numerical tests must be performed to determine the

appropriate values of A and B. Initially it was not known if they could be

held constant, or if they must become dependent on the free-stream

turbulence intensity. However, preliminary tests showed that for good

results, they must be made functions of Tue. The conditions for the tests are

the same as considered in chapter 3; ie. fiat plate, zero pressure gradient flow

with variable free-stream turbulent intensity. For calibration purposes, the

free-stream dissipation was kept low so that Tu e remained essentially

constant (free-stream length scale effects will be discussed in the next

section). The start and end of transition was taken to be where Cf was at it's

minimum and maximum respectively. Computations were started a very low

Rex,i to assure that the calculations were independent of the initially specified

profiles of k and e.

Starting at one specific free-stream turbulence level, a series of

computations were made. After an initial guess, A and B were appropriately

adjusted after each run, so that each succeeding calculation agreed more

closely with the correlation of Abu-Ghannam and Shaw. After a number of

iterations it was then possible to find the "correct" values so as to achieve the

start and end of transition exactly in accord with the correlation. For clarity,

that correlation is repeated here;

Re0, s = 163 + exp(6.91 - 100*Tue) (4,8)
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Re0,E = 2.667 * Re0, S (4.9)

Once A and B were found at one free-stream turbulence intensity, the level

was changed, and the process was repeated.

In Section 4.5.1 and 4.5.2, two distinct ideas for controlling the

production term were explored, but their combined use was not discussed.

For computing flows at high Tue, where transition should occur very near to

Re0-163, there is not sufficient time for the production term to grow if Pk is

maintained at zero up until Re0=162, as was done in 4.2.1. However, a few

computational tests showed that choosing a value of about 125 would be

sufficiently low. This value will hereafter be referred to as Re0, C. Initially,

Re0,c=125 was adopted as a constant for all of the calculations with the Lam-

Bremhorst model. This may seem somewhat arbitrary, but it was actually

constrained by the following two factors;

(1) If Re0, C is too high, the correct start and end of transition could not

be obtained through the use of eq. (4.6) for any values of A and B

(2) The lower Re0, C becomes, the smaller the region near the leading

edge within which starting profiles of k and e are not significant to the

calculations.

Since insensitivity to the initial profiles of k and e is a desired characteristic,

their seemed no reason to consider reducing Re0, C further, and the

calibration tests for A and B were performed with this value. Afterward,

tests were made to determine just how dependent or sensitive the
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computations were to this value. It was found that reducing Re0,C did

somewhat shorten the acceptable starting region as explained above, although

it did not require the values of A and B to be changed. At high turbulence

intensities, although the Re0-transition relationship remained unchanged, the

actual location where transition occurred was slightly shifted upstream.

However, for low Tue, there was no significant effect at all. This will be

illustrated in the next section where results will be shown for both Re0,c=

125, and for Re0,c= 0.

Calculated V_tlues of A and B for the L.B. Model

Calculations to determine the transition model parameters A and B

were made for a range of turbulence intensities of from 0.5 to 10.0 %. The

results of these calculations are presented in figures 4.8 and 4.9. Note that

both A and B have been non-dimensionalized with respect to local free-

stream conditions as follows;

-- AI.t e

A = Pe-_e (4.10)

B
B = 3 6 (4.11)

PeUe

After these computational experiments were completed, curve fits were

made to the data, which are also shown in the figures. It was found that the
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variation in A and B could be represented very well as follows;

Let _--Tu c , B = B * 1012, and A. = A * 106

0.0<(_ .07 loge(B)---5.4549 + 389.2806"(_ - 7556.0334"_) 2

+ (7.278* 104)*(_ 3 - (2.85036* 105)*@ 4

loge(B)= 1.8625 + 14.6786"_)

(4.12)

0.0 < _ < .02

.02 < (l)< .081

.081<

m

A ---6.8475

,,_ =--6.4711

m

A = --4.6011

- 367.00"(_ + 9200.0"_ 2

+ 1177.586"¢_ - 45930.0"¢_ 2

+ (6.152"105)*(_ 3 - (2.767,106)*_p 4

(4.13)

It should be noted that the calibration tests showed the predicted location of

transition to be more strongly influenced by the value of B, than it was by A.

The linear term within which A is found has only a secondary role, but was

necessary to control the length of transition properly.

Figure 4.10 is a duplication of Figure 3.4 with the results of these new

calculations added. It simply indicates that A and B were properly found so

as to match the correlation.
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In Figure 4.11, typical turbulent kinetic energy profiles produced

during transition are plotted. When compared with Figure 4.3 we see very

clearly the effect of controlling the production term. The overshoot so

visible before is almost completely removed and the profiles vary smoothly

from the laminar to turbulent state in a physically plausible manner. (It is

interesting to consider the similarities with the data of Dyban, Epik, and

Suprun [24].)

4.5.6 The Effects of High Free-stream Dissipation Rate

Almost all of the calculations presented up to this point have been done

on flow conditions where the free-stream turbulence intensity was assumed

to be essentially constant. This was accomplished computationally by simply

setting the starting value of ee equal to a very small number. However, in

real situations this is not normally encountered, especially in flows of high

Tu e, where invariably the dissipation rate is also high. Thus the question

naturally arises as to how to properly account for a free-stream turbulence

intensity that is changing significantly before transition occurs.

One of the advantages of using a k-e approach is that the effects of this

type of variation are naturally included as part of the model. As far as the

transition parameters are concerned, we simply base them on the local free-

stream conditions. Computationally, since the step size is usually quite small

relative to the rate at which k and e decay, it is usually quite sufficient to only

update A and B after every 10 or 20 steps.
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Since the relationship between ke and Tu e involves the free-stream

velocity, acceleration can also have dramatic effects on the free-stream

turbulence intensity. If the flow accelerates, Tue goes down, even though ke

may have remained relatively constant. Deceleration has just the opposite

effect, yielding an increase in Tu e. This does not present any additional

difficulty for the model, and as before, we simply continue to base our

calculations on the local free-stream conditions.

4.6 TRANSITION CALCULATIONS WITH THE PTM
VERSION OF THE LAM-BREMHORST MODEL

Results from a number of calculations are presented here to show the

location and characteristics of transition as predicted by the modified Lam-

Bremhorst model. Calculations for seven free-stream turbulence conditions

covering a range of 1.0 to 8.0% were made. As before, the conditions

considered were simple flat plate, zero pressure gradient flows with the free-

stream turbulence being the only variable parameter. The results are

represented through three different plots. In Figure 4.12, the variation in Cf

with Re x is shown. This can be compared with Figures 3.3-a, 3.3-b, and 4.1,

which show the calculations made with the unmodified Lam-Bremhorst,

unmodified Jones-Launder, and method of Rodi and Scheuerer respectively.

Figure 4.13 replots Cf as a function of momentum thickness Reynolds

number. This will be helpful when comparing the effect that changing Re0, C

has on the predictions. Finally, Figure 4.14 shows the calculated variation in

the shape-factor ( the ratio of displacement to momentum thickness) with

Reynolds number.
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In addition to the transition aspects that these figures show, it is

interesting to note the predicted effect that high free-stream turbulence has

on both the "pseudo" laminar region prior to transition, and on the fully

turbulent conditions. This is manifest in an increase in Cf, and a decrease in

shape factor, and can be easily observed far before Cf reaches it's minimum.

This carries through to the turbulent region where Cf shows a 15-20 %

increase over the value for the 1% case. Both of these trends are consistent

with experiment and will be discussed again later.

Figures 4.15 through 4.17 show the effect of removing the restriction

that sets Pk=0 for Re0,c<125. Except for this difference the calculations

were identical. The results are compared at Tu¢=2% and 6% as

representative of the effects in general. The following three items should be

mentioned relative to this comparison.

(1) The most significant differences occur

intensities.

(2)

(3)

at higher turbulence

When Re0,c=0, the boundary layer is more strongly affected in the

upstream "pseudo laminar" region than before. This is due to

allowing Pk to begin to grow sooner. However, as can be seen in

Figure 4.16, although the magnitude of Cf has changed, the location

with respect to Re 0 where a minimum is reached is not changed.

Thus the agreement of these calculations with the correlation of

Abu-Ghannam and Shaw has not been significantly altered.

When Re0,c----O, the change in shape factor over the transition region

takes a less abrupt and smoother path from its fully laminar value of

2.6 down to the turbulent conditions.
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The only other difference relates to the sensitivity of the calculations to the

initial starting location. This will be shown in section 4.8.

4.7 APPLICATION OF THE MODIFICATION TO THE JONES-
LAUNDER MODEL

The previous sections of this chapter have explained the application of

the PTM modifications almost entirely in terms of the Lam-Bremhorst

model. However, in principle, the only difference in using another model

should be with respect to the calibration of the parameters A and B. To

assure that this was indeed the case, The Jones-Launder model was modified

in exact analogy to the Lam-Bremhorst model, and the parameters A and B

determined. It may be recalled that the Jones-Launder model differs from the

Lam-Brernhorst model in it's dissipation rate variable and in the introduction

of some additional source terms. However, on applying the transition

modifications only the production term in the modeled k equation

(Pk=O.t(OU/OY) 2 ) was controlled.

The only real question that needed to be answered was whether or not

to apply a critical momentum thickness criteria (as explained in section 4.5.1)

in addition to limiting the growth rate (recall that the Lam-Bremhorst model

was applied both with and without this modification). To answer this

question A and B were first found at a relatively high turbulence intensity.

Then a number a experiments were made to determine the highest value of

Re0, C that could be used and still match the correlation of Abu-Ghannam and
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Shaw. It was found that in contrast to the Lam-Bremhorst model, The

highest value of Re0, C that could be used was only about 75. This can be

attributed to the additional source terms in the Jones-Launder model, all of

which act to suppress the turbulent kinetic energy in the developing region.

Since this was so small the application of a critical momentum thickness

parameter in addition to growth rate limitation was neglected (ie. Re0,c=0).

Figures 4.18 and 4.19 show the behavior of A and B as found through

a series of numerical experiments. Also shown for comparison is the

previously determined variation of 7, and B" for the Lam-Brernhorst model.

A curve fit representing the data is given as follows in eqs. (4.14) and (4.15).

Let (_=100*Tue, B - g * 1012, and A = A * 106

0.0 < (_ < 2.0 loge(B) - -5.8084 + 2.995"(_

2.0 < _) < 6.0 B - 18.738 - 26.8085"(_

- 2.1152,(_ 3

6.0 < (_ loge(B') -- 1.950 + 0.1573"_

+ 12.7536"(_ 2

+ 0.1218"(_ 4

(4.14)

0.0 < _ < 6.0 ,_. = 12.2266 - 1.7904 *(_ - 2.4229"(_ 2

+ 0.57595"_ 3- 0.0365"(_ 4

= -7.5 - 0.19"_)

(4.15)
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It is interesting to note that they are qualitatively quite similar to the the Lam-

Bremhorst parameters except for the small dip in the "B "parameter curve at

about Tue=2%. This dip is directly associated with the problem in the Lam-

Bremhorst f_t function that was explained in section 4.2.

After A and B were found, the same seven flow conditions considered

in section 4.6 where calculated and the transition predictions plotted. These

are shown in figures 4.20 to 4.22. They are very similar to the results using

the Lam-Bremhorst model, as can be more clearly seen in figures 4.23-4.25.

In these figures, calculations at Tuc=2% and 6% are compared with both

Lam-Bremhorst model calculations ( ie. Reo,c=125 and Reo,c--0). It may

be noted that in each of these cases the Jones-Launder model predicts a

slightly lower Cf in the fully turbulent region than the Lam-Bremhorst

model. This is due to the particular choice of constants used in the LRN

function equations (some variation exists in the literature) and is not a result

of the transition modifications made. Of greater interest is that results of

the PTM Jones-Launder model, which are for Re0,c---0, compare very well

with the results of the PTM Lam-Brernhorst models for Reo,c =125.

One problem occurred in applying the modifications to the Jones-

Launder model. When calculating transition at Tue=l%, the simulation

proceeded smoothly until transition was about 20% complete. At that point

there was an abrupt decay of the predicted results back to a laminar-like state.

If computations were allowed to continue, this process would repeat itself.

Investigation revealed that the problem was related to the f_t function

decaying to values less than one in the outer regions of the boundary layer. It
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was apparently due to the production term in the fully turbulent region near

the boundary layer edge naturally growing faster than the transition

prediction modification would allow (At low Tue, the parameter B becomes

quite small). Note that near the boundary layer edge we normally do not

desire any near-waU LRN effects. As a result, this would cause a small decay

in the ratio of k to e in that region, reducing the turbulent Reynolds number

"Ret", which then yields a smaller f_t. When f_t begins to drop, the

production term is directly diminished, and the imbalance between k and e

then starts to become significant. This cycle quickly grows and causes the

behavior mentioned.

Although the root of the problem appears to be the undesired effect of

the transition modification in the fully turbulent region, without the decrease

in f_t, the effect would be negligible because the unstable cycle mentioned

would be broken. For example, since the Lam-Bremhorst model fl_ is also a

function of Rey, a similar problem is precluded. Thus, for practical

purposes, the problem can be overcome by requiring f_t to behave

monotonically with y. This is accomplished by simply preventing f_t from

decreasing (with respect to the y coordinate) once it has reached it's

maximum value of one. This is what was done for the 1% calculation shown.

Of course, this is admittedly only a symptomatic treatment of the problem. A

more general solution would require that the production term growth

limitation be restricted to local areas where the turbulent Reynolds number is

not large, ie. the introduction of an additional LRN function. Considering

that the problem occurs only for Tue<1%, this additional complexity did not

seem justified at this time.
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In summary, it has been shown in this section that the PTM modifi-

cations can be applied with equal success to other k-e LRN turbulence

models. To do so simply requires the determination of the parameters A and

B as explained. However, it also may require a simple additional restraint

on the behavior f_t to avoid a problem at low Tu e.

4.8 STARTING CONDITIONS AND THE "PTM" MODELS

To assure consistent repeatable predictions it is important that the

sensitivity of the method to the initial starting location be clearly identified.

As this was done for the unmodified models in Chapter 3, it is now important

to determine this for the PTM form of the models. To do so, tests were made

for flows with Tue=3%, and at Tue=8%. The initial starting location was

then varied from Rex,i =l.x 102, to Rex,i = 2.27 x 104, and the results

compared. Some plots of these results can be seen in Figures 4.26, 4.27, and

4.28, which correspond to using the Lam-Bremhorst model with

Re0,c-125, the Lam-Bremhorst model with Re0,c=0, and the Jones-

Launder model respectively.

The important aspects of this comparison can be listed as follows;

(1) As compared to the 3% calculations presented in chapter 3, the Lam-

Bremhorst model with Re0,c--125 shows a greatly reduced

sensitivity to starting location. However, the free-stream turbulence

effects in the region prior to transition are also diminished. In
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contrast, the Lam-Bremhorst model with Re0,c=0 , together with the

JonesLaunder model show only a limited decreases in sensitivity.

(2) For the Lam-Bremhorst model, the importance of the starting

location seems to increase as Tue goes up. This does not appear to be

the case for the Jones-Launder model.

(3) For the Lam-Bremhorst model, the actual location in x where the

minimum in Cf occurs is not very sensitive to the starting location

Instead, it tends to affect the magnitude of Cf at which this minimum

occurs. For the Jones-Launder model, this is not the case.

(4) For each of the models and for both of the conditions tested, starting

the calculation at a Rex,i less than 103 is sufficiently low to reduce

the starting location effects to insignificance. Note that this implies

that the calculations are also insensitive to the starting profiles of k

and e under these conditions.
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model. Re0,c =125
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CHAPTER FIVE

COMPARISON OF THE PROPOSED MODEL WITH

EXPERIMENTAL DATA

Up to this point, direct comparison with experiment has been deferred

in favor of developing the models as guided by empirical and semi-empirical

correlations. This was deliberately done to avoid the potential bias that might

occur if the method were "tuned" so to speak to only one or two experimental

data sets. However, in order to truly evaluate the effectiveness of the model,

careful comparison with a wide range of experiments is crucial.

In this chapter, the calculations will be compared with the results of 34

separate experiments taken from six different sources. Table 5.1

summerizes some of the important conditions of interest for each of these

experiments. The flow conditions most thoroughly considered are fiat plate

flow both with and without favorable pressure gradients, but the calculations

will also be compared to turbine blade cascade data. All of these experiments

involve transition occurring under the influence of free-stream turbulence.

The model used in all of these calculations is the PTM form of the

Lam-Bremhorst model with Re0,c=125.
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TABLE 5.1 Experimental Conditions for the Selected Data Sets

Reference Identifier Tu (%) . Acceleration Thermal Boundary Tw/Te Te

at x-O] Condition (approx.) (total)

1 Wan_ (and Simon) flat plate test 2.3 NO Ow,160 W/(m'm) 1.03 298 K

2 Rued {and Wittig) Nr. 2. no grid 1.6 No Tw,302 K (29 C) P.8.. 378 K

3 Rued (and Wittig) Nr. 2., Grid 1 2.3 No Tw-302 K (29 C) 0.8 378 K

4 Rued (and Wittig) Nr. 2., Grid 2 3.8 No Tw,,302 K (29 C) 0.8 378 K

5 Rued (and Wittig) Nr. 2., Grid 3 6.5 NO Tw-302 K (29 C) 0.8 378 K

6 Rued (and Witfig) Nr. 2., Grid 4 8.6 NO Tw,,302 K (29 C} 0.8 378 K

7 Blair and Werle Grid 1 1..4 . No Qw=850 W/(m'm) 1.03 295 K

8 Blair and Werle Grid 2 2.8 No Qw=850 W/{m'm) 1.03 295 K

9 Blair and Werle Grid 3 6.2 No Ow,,850 W/(m'm) t.03 295 K

1 0 Blair and Werle Low K, Grid 1 1.0 K=.20"10e-6 Qw=850 W/(m'm) 1.03 297 K

1 1 Blair and Werle Low K, Grid 2 2.1 K=.20"10e-6 Ow-850 W/(m'm) 1.03 297 K

1 2 Blair and Werle Low K, Grid 3 5.2 K=._0"10e-6 Qw=650 W/(m'm) 1.03 297 K

1 3 Blair end Werle High K, Grid 2 2.2 K=.75"10e-6 Qw-850 W/(m*m) 1.03 297 K

1 4 Blair and Weds High K, Grid 3 5"2 K=.75"10e-6 Qw,850 W/(m'm} 1.03 297 K

I 5 Rued (and Wittia) Nr. 6. a Grid 1 ,2.4 Kmex,,t.2"10e-6 Tw-298 K (25 C ) 0.64 466 K

1 6 Rued (and Wiftig) Nr. 6._ Grid 2 3.9 Kmex,,1.2"10e-6 Tw-298 K (25 C ) 0.64 466 K

1 7 Rued (and Wittig) Nr. 6., Grid 3 7.7 Kmax=l.2"10e-6 Tw,,298 K (25 C ) 0.64 466 K

1 8 Rued (end Wittig) Nr. 6., Grid- 4 1 1.1 Kmax;1.2"10e-6 Tw=298 K (25 C ) 0.64 466 K

1 9 Rued (and Wlttig) Nr. 10, Grid 1 2.6 Kmax,3.2*10e-6 Tw,,296 K (23 C ) 0.64 463 K

20 Rued (and Wittig) Nr. 10, Grid 2 3.6 Kmax,3.2"10e-6 Twp296 K (23 C ) 0.64 463 K

21 Rued (and Wittig) Nr. 10, Grid 3 7.0 Kmax-3.2"10e-6 Tw,296 K {23 C } 0.64. 463 K

22 Rued (and Wittig) Nr. 10, Grid 4 10.1 Kmax,3.2"10e-6 Tw,,296 K (23 C ) 0.64, 463 K

23 Rued (and Wittig) Nr. 12, Grid 1 2.6 Kmax,5.7"10e-6 Tw-299 K (26 C ) 0.64 467 K

24 Rued (and Wittig} Nr. 12, Grid 2 _.6 Kmex=5.7*10_-6 Tw,299 K (26 C ) 0.64 467 K

25 I Rued (and Wittig) Nr. 12, Grid 3 7.0 Kmex=5.7"10e-6 Tw,,299 K (26 C ) 0.64 467 K

26 Rued (and. Wittig) Nr. 12 a Grid 4 10.1 Kmax,5.7"10e-6 Tw-299 K 126C ) 0.64 467 K

27 Daniels (and Browns} ReD, suCtion " 4.0 Tu_ne Blade Tw,289 K (16 C } 0.67 432 K

28 Danlels (and Browns} ReD, pressure " 4.0 Turbine Blade Tw,289 K 116 C ) 0.67 432 K

2 9 DankHs (and BrgwnellRl,+, W;ti0n 4.0 Turbine) .Blade Tw=28_) K (1l_ C I 0.67 432 K
.30 Daniels (and Brownel Re+, pressure " 4.0 Turbine Blade Tw-289 K (16 C _1 0.67 432 K

31 Hylton el el. Run 145 - S " 6.5 Tu_ne B(ad-e Tw,,650 K (377 C 0.81 792 K

32 Hylton el al. Run 145 - P " 6.5 Turbine Blade Tw,,650 K (377 C 0.8..1 792 K

33 Hylton el al. Run 149 - S " 6.5 Turbine Blade Tw,,650 K (377 C 0.81 795 K

34 Hylton et el. Run 149 - PI " 6.5 Turbine Blade Tw,,650 K (377C 0.81 795, K

• upstream value

Ue

(_t x=o}

1:).5 m/s
47 m/s

47 m/s

47 m/s

47 m/s

47 m/s

30.5 m/s

30.5 m/s

30.5 m/s

15.9 m/s

15.9 m/s

15.9 m/s
9.93 m/s

9.93 m/s

49 m/s

49 m/s

49 m/s

49 ml_

48 mls

48 m/s

48 m/s

48 mls

27 m/s

_7 m/s
27 m/s

27 mls

Vinf=146 m/s
'Vinf=146 m/s

,Vinf=135 m/s

Vinf=135 m/s

Vinf=90 m/s

Vinf=90 mls

Vinf=9(_ m/s
Vinf-90 mls
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5.1 SIMPLE FLAT PLATE FLOW WITH FREE-STREAM
TURBULENCE

This section will consider experimental data from transitional flows

occuring under the influence of free-stream turbulence, but without pressure

gradients or curvature. A comparison will be made between results of

calculations made with the PTM Lam-Bremhorst model and the experiments

of Wang [91,92], Rued[72-74], and Blair and Werle[8]. These are listed as

the first nine entries in Table 5.1. Taken together these experiments span a

range of total free-stream turbulence intensity levels from less than 1% to

nearly 9%. In each experiment, the effects of transition are given in terms of

heat transfer, thus the evaluation will be restricted to comparing local

Stanton numbers. This is defined in a standard way as

Nu qw

St - Pr Re - peUeCp[T w -Te] (5.1)

5.1.1 Data of Wang

This experiment was conducted in a low speed wind tunnel (Ue=13.5

m/s) under ambient atmospheric pressure with air. The test section was

heated with a uniform heat flux of about 160 W/m 2. Suction was applied at

the leading edge such that the growth of the boundary layer simulated a

classical sharp-leading edge. A square grid was placed upstream of the test

section such that the turbulence intensity was about 2% over the test section.
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The streamwise component of the free-stream turbulence was measured at a

number of different locations using hot wire anemometry. In Fig 5.1, these

experimentally reported values are shown together with the approximated

conditions applied in the computations. Since only the streamwise

componant of the free-stream turbulence was reported, the turbulence was

assumed to be isotropic for the purpose of setting the turbulent kinetic energy

boundary conditions. For a velocity of 13.5 m/s, this translates to 1%=. 15

m2/s 2 and _= .70 m2/s 3 at the location x=0.

In Fig. 5.2 the heat transfer results for calculations using the PTM form

of the Lam-Bremhorst model are compared with this experiment. Also shown

is a calculation by Park and Simon [60] using standard mixing length type

transition modeling as per Abu-Ghannam and Shaw [2] and Dhawan and

Narasirnha [22]. Their evaluation of a number of different models showed

this combination to be the best. The agreement is excellent, and an improved

simulation of the transition path is compared to mixing length type models is

indicated. It is interesting to note that although the PTM model was also tuned

to the correlation of Abu-Ghannam and Shaw, transition begins somewhat

earlier because the momentum thickness itself is altered through the turbulent

transport. Furthermore, the overshoot predicted by the mixing length type of

models is avoided. Thus for this experiment the path of transition is more

realistically simulated as a gradual process that actually begins far upstream of

the point where the heat transfer shows a sharp increase. (It should be noted

that in this case both methods used the experimentally determined turbulent

Prandd number in the turbulent heat transfer calculations. This however has

no real bearing on the transition predictions.)
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5.1.2 The Use of the Streamwise vrs. Total Turbulence

Intensity

At lower turbulence intensities and at distances relatively far

downstream from grids, the turbulence in wind tunnels is quite isotropic. As

a result, the experiment of Wang is not unusual in reporting only the

streamwise component of the turbulence intensity. However, to generate test

conditions with high turbulence intensities, experimentalists are required to

install relatively coarse grids at locations fairly close to the test section.

Because grid generated turbulence is not isotropic (generally characterized

by u'2> _2> w,2), a different turbulence intensity can be defined and

measured for each of the three spatial directions. Unfortunately, transition

experiments conducted in the past have usually neglected this and reported

only the streamwise component. Only recently have transition experiments

appeared in the literature where a more complete description of the

turbulence is given. The experiments of Rued, and Blair and Werle, which

will be considered next, are examples of this.

In eqs. 1.1 and 1.2, the distinction between the streamwise turbulent

intensity "Tue", and the total turbulence intensity "Tue,r" is defined. Since

the turbulent kinetic energy is the sum of the fluctuating energy in each

direction, this difference affects k-E models through the specification of Ice as

a boundary condition, ie;

1¢e = 1.5(U e Tu¢,r) 2 (5.2)

If only u '2 is known, and Tu e replaces THe, T in eq. (5.2), then 1% would
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obviously be in error if the turbulence is not isotropic. For a fully turbulent

boundary layer this difference would probably be insignificant. However,

since the effect (if any) of non-isotropic free-stream turbulence on transition

is unknown, a question arises concerning the PTM model. Many of the

experiments used in developing the correlation of Abu-Ghannam and Shaw

are based on Tu e only. Thus, even if v '2 and w '2 are known, is it better to

base k e on Tu e in the PTM model?

As a result of questions like this, as well as the added benefit of

examining how sensitive the predictions are to small changes in the boundary

conditions, the results to be presented next will be calculated both ways, ie.

using eq. (5.2) as is, or replacing Tue, T with Tue. Afterwards, the relative

importance of this issue can more adequately be discussed.

5.1.3 Data of Rued

Rued[72-74] has conducted a large number of experiments dedicated to

examining the influence of free-stream turbulence, pressure gradient, and

large temperature variations on transition. In this section we will consider

only those tests conducted without pressure gradients. In contrast to the

experiments of Wang, Rued's test facility provided for the incoming air to be

heated while the test section surface was cooled and kept at a constant

temperature. Turbulence measurements were made using laser-doppler-

anemometry, and turbulence grids were installed to provide total turbulence

intensities of from 1.6 to 8.7 % at the leading edge. The free-stream velocity

was constant and equal to 47 m/s. Two components of the turbulence, u '2
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and v 'z were measured and reported at different locations along the test

section. Since w '2 was not measured, it was assumed to be equal to v '2 in

the definition of Tue, T. Figures 5.3 and 5.4 show the streamwise distribution

of both Tue, Tand Tu e for each of the turbulence grids. Comparing these two

figures one can observe the higher values of Tu e relative to Tue, r. Also

shown is the streamwise variation of the turbulence intensity as approximated

in the computations. Note that the excellent agreement between the computa-

tionally specified distributions and the data from each grid verifies the

accuracy of the reduced equations for k e and ee given in equations (2.35) and

(2.36). Table 5.2 provides the exact values of k e, ee and Tu at the start of the

test section as used in the computations.

TABLE 5.2 Free-Stream Turbulence Conditions Specified in Computing the
Zero-Pressure Gradient Flows of Rued [72]

Parameter

Tue, T at x=O

k e (m2/s 2) ,,

8e (mZ]s 3) ,,

Tue, T at x=.4 m

No grid

1.6%

.848

55.0

1.28%

Grid 1

2.3%

1.75

365.0

1.36%

Grid 2

3.75%

4.66

1589

1.85%

Grid 3

6.5%

14.0

8214

2.55%

Grid 4

8.6%

24.5

14,905

3.32%

Tue at x=0

ke (m2/s 2) ,,

I_e (m2/s 3) ,,

Tue at x=.4 m

1.71%

.969

62.3

1.37%

2.8%

2.60

48O

1.72%

4.65%

7.16

1600

2.68%

7.4%

18.14

9530

3.05%

10.8%

38.6

24,000

4.13%
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In Figure 5.5, the experimental Stanton numbers are compared with

the computations which used the total turbulence intensity. In general, very

good agreement is shown except with grid 2, where the calculation predicts

transition somewhat downstream of the data. Although not as much as the

grid 2 case, it is interesting to note that the calculations for grid 1 and the no-

grid case also are slightly downstream of the data.

In Figure 5.6 the experimental Stanton numbers are compared with the

computations which used the streamwise turbulence intensity. Since Tu e is

larger than Tue, T, the calculations show a general upstream shift in the

predicted transition locations. This improves the agreement for the grid 2

case, leaves the overall agreement about the same for the no grid and grid 3

cases, but reduces the agreement for grids 1 and 4. This behavior will be

discussed further after considering the results of calculating the experiments

of Blair and Were.

5.1.4 Data of Blair and Werle

Similar to Wang, these experiments were conducted in a low speed

wind tunnel (Ue=30.5 m/s) under ambient atmospheric pressure with air.

After a short unheated starting length, the test section was heated with a

uniform heat flux of about 800 W/m 2. Suction was applied at the leading

edge such that the growth of the boundary layer simulated a classical sharp-

leading edge. Three different turbulence generating grids were placed

upstream of the test section to provide total free-stream turbulence levels of

1.4%, 2.8%, and 6.2% respectively at the leading edge. (Data from a fourth

grid was also taken but will not be considered here because transition
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occurred before the heated test section.) Hot wire anemometry was used to

determine all three components of the turbulence (u '2, v '2, and w '2) at a

number of different locations. As a result of a contraction in the wind tunnel

upstream of the test section, the u '2 component was reduced to a value less

than v '2 and w '2. However, evaluation of the data showed that the

streamwise variation of Tue, T could still be accurately represented in the

following theoretical form ( see Baines and Peterson [5]);

Tue, T = 0.78 _ x +b132 )-5/7 (5.3)

where x is in cm. and b=.48, 1.27, and 3.81 for grids 1, 2 and 3 respectively.

This is shown as the dashed lines in Figure 5.7. Also shown in Fig. 5.7 is the

reported variation in Tu e and the corresponding approximate variation used

in the calculations. Table 5.3 gives the exact values of lce, ee and Tu that are

used in the computations at x=0.

Figure 5.8 compares the calculations using Tue, T with the

experimental data. Good agreement is shown for grid one, but transition is

predicted significantly upstream for the grid two case. For grid 3, transition

is just ending as the flow passes the end of the unheated starting length, thus

the only quantitative information that can be gained is that the model does not

predict transition too late.

When the calculations are made using the Tu e data, the resuk is to shift

the location of transition downstream. These calculations are shown in Fig.

5.9. ( Recall that this is opposite of Rued's case because for Blair's data, u e

is less than v '2 and w '2) This appears to reduce the accuracy of the grid one
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TABLE 5.3 Free-Stream Turbulence Conditions Specified in Computing the
Zero-Pressure Gradient Flows of Blair and Werle [8]

Parameter

THe, T at X"O

k e (m2/s 2) ,,

ee (m2/s3) "

Tue, r at x=l.6 m

Grid I

1.41%

.277

11.8

0.80%

Grid 2

2.82%

1.12

47.5

1.60%

Grid 3

6.20%

5.36

228

3.52%

Tue at x=0

ke (m2/s 2) "

ee (m2/s 3) "

Tue at x-l.6 m

1.12%

.175

2.75

0.82%

2.33%

.757

19.5

1.50%

5.75%

4.60

150

3.44%

prediction, but improves the agreement with grid 2 and grid 3. In

considering this contrast it should be noted that Blair and Werle report that

when doing experiments without a grid (the data is not shown here), the

transition location was clearly shifted upstream due to wall effects

propagating into the boundary layer. Since grid one is still at a relatively low

free-stream turbulence level, it is possible that this case was slightly affected

also. If so, the tendency of the u '2 based calculation to be somewhat closer

to the data would be a consistent trend for all three cases.



142

5.1.5 Discussion and Summary

Since a point was made earlier in this section to make a distinction

between Tue, T and Tue, a further discussion of this is now warranted.

When using Tue, T in the calculations, the only significant difference

with experiment occurred in the mid turbulence intensity range. However,

when comparing the calculations of Rued's cases with Blair and Werle's

cases, the direction of the error was opposite. For Rued's data, grid 2, the

predicted transition was a little late, whereas for Blair's data grid 2, the

predicted location of transition comes too early.

When comparing the two experiments, the one quantifiable

dissimilarity likely to be significant is the difference in anisotropy. This

hypothesis is supported by the calculations where, in almost every case, the

direction of the error correlates with the variance between the u '2

component of turbulence relative to the mean. When u '2 was high, using

Tue, x tended to yield predictions somewhat downstream of the data. When

U'2 was low, using Tu¢, x tended to yield predictions somewhat upstream of

the data. This leads to the conclusion that one or both of the following may

be true; (1) the model as currently correlated is somewhat biased to the u'

component of turbulence, and/or (2) the transition process itself is

significantly influenced by the anisotropy.

In light of these observations, it is also interesting to recall something

about the origin of the production term ( u'--v' OU/OY ) that appears in the

exact form of the k equation. One way to derive this equation is to start with

a transport equation for each of it's components, ie. u '2, _;2 and w '2. The

k equation is then found by appropriate addition of each of these equations.
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Upon examination of these equations individually, one sees that the

production term comes entirely from the _2 equation. Since this term is

clearly important in the transition process, this tends to support the

possibility of a connection between the anisotropy and transition as observed

here.

In summary, the predictions of the PTM form of the Lain Bremhorst

model have proved excellent at reproducing both the start, the end, and the

path of transition as manefest in the heat transfer. Although some differences

between the data and the calculations exist, they are not large, and there

appear to be rational explanations to justify most of the discrepancies.

Considering the mount of scatter in the data used as a basis for the

correlation of the Abu-Ghannam and Shaw [2] - which correlation is the

basis for finding the parameters A and B- the results have been very

encouraging.

5.2 TRANSITIONAL FLOWS WITH ACCELERATION

In this section the calculations will be compared against pressure

gradient experiments reported by Blair ard Werle [9], and by Rued [72].

Taken together, these experiments provide an excellent range of different

accelerating flow conditions with which to test the calculational procedure.

No additional modifications will be introduced into the model at this point.

This is possible because the LRN form of the k-e model is also inherently

responsive (at least qualitatively) to the effects of acceleration. In fact, it was

the early demonstration of the ability of the LRN k-E model of Jones and
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Launder to simulate relaminarization[37] that helped attract further research

into models of this type.

In characterizing acceleration, it is useful to define an acceleration

parameter K. Previously defined in equation (1.4), it is repeated here;

(1.4)

For the experiments of Blair, two sets of data are presented. Each set

corresponds to a different level of constant K being maintained over the

entire test section, but provides data at a number of different free-stream

turbulence conditions. In contrast, the experiments of Rued are such that the

value of K is changing dramatically over the length of the test section. Three

representative sets of this data will be used.

5.2.1 Some Limitations Inherent in the 2-Equation Approach

Under strong acceleration such as is caused by a test section

contraction, each of the components of the Reynolds stress tensor are

affected differently. For example, if x is the stream-wise direction, a

contraction in the test section along the y direction, will yield a stratification

from an initially isotropic state such that v '2 > w '2 > _2. This in fact is

the effect which caused the significantly different nature of the anisotopy in

Blair's experiments as compared to Rued's. However, more than a simple

redistribution of energy within the different components can occur. In
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addition to this, energy can be extracted from the flow to cause a net increase

in the total turbulent kinetic energy. Figure 5.10 is presented as an

illustration of this. Here the experimentally reported turbulence intensities

for one of the data sets of Rued have been converted to turbulent kinetic

energy and then normalized with respect to the conditions at x---0. Although

qualitative differences occur, the data all show the same trend; ie. a rapid

decrease in k followed by a period of significant increase, which finally

begins to decrease again. The solid curve shown is simply a polynomial

curve fit to all of the data in order to represent the trends clearly.

From a mathematical standpoint, this behavior can be explained

through examination of the various nonlinear terms that appear in the set of

transport equations describing each component of the Reynolds stress tensor.

These form the basis of the so called Reynolds-Stress-Equation turbulence

models. Together with certain closure assumptions, these equations can be

solved to yield a fairly accurate prediction of these effects, at least for simple

geometries. However, this behavior is beyond the capabilities of the k-E

model to simulate, at least in the standard form used here. This is clearly

seen by recalling that in the free-stream, the reduced set of equations given

by eq.(2.35) and (2.36) are assumed valid. Examination shows that since e is

an always positive variable, these equations preclude the possibility of k

increasing in the streamwise direction.

Because of this limitation, under some of the conditions for which

Rued carried out experiments, the calculational procedure will only allow an

approximation to the correct boundary conditions for k and e. This will be
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documented in the presentation of the results in order to evaluate it's

significance.

5.2.2 Data of Blair and Werle

The pressure gradient experiments of Blair and Werle[10] were

conducted at the same basic facility as those reported in Blair and Werle[8]

for zero pressure gradient conditions. However, the side opposite of the test

section in the wind tunnel was modified so as to produce a flow of almost

constant acceleration. The two values of K obtained were K=.20 x 10 -6 and

K=.75 x 10 "6. The corresponding free-stream velocity distribution for each

of these cases is shown in Fig. 5.11.

Figures 5.12 and 5.13 document the approximated free-stream

turbulence conditions used in the calculations as compared to the

experimental data. As was done in section 5.1, calculations were made using

both TUe,T and Tu e. In Fig. 5.12 a curve for grid 3 is shown but no data is

indicated. Blair reports heat transfer results for this condition but did not

document the free-stream turbulence. However, since the actual grid was the

same as used for the data shown in Fig. 5.13, it was possible to estimate the

actual variation in Tu with a high degree of confidence. The exact values of

ke, ee and Tu used the calculations are given in Table 5.4.

Figure 5.14 presents the calculated heat transfer results for the lowest

acceleration cases. Excellent agreement is obtained, and once again, the small

variation that does exist is shown to correlate to the anisotropy as previously

explained. In the fully turbulent region, the data tends to be higher than the
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TABLE 5.4 Free-Stream Turbulence Conditions Specified in Computing the
Pressure Gradient Flows of Blair and Werle [9]

Parameter

Tue, T at x=0
I% (m2/s 2) "

e, (m2/s3) "
Tue,r at x=1.6 m

K=0.2 x 10-6 K=0.75 x 10 -6

2.1%

.1672

1.20

1.10%

2.24%

.0742

.14

0.45%

1.03%

.0402

.07

0.64%

5.3%

.415

2.70

0.91%

Tu e at x=0

ke (m2/s 2) ,,

ee (m2/s 3) "

Tue at x=l.6 m

0.94%

.0335

.01

0.62%

1.86%

.1312

1.0

0.97%

4.80%

.341

20.0

1.89%

1.90%

.0534

.14

.37%

4.77%

.336

3.20

.75%

predictions. This apparently is due to the acceleration since the calculations

with zero pressure gradient do not show this difference. In any case, the

issue is a separate one from the transition predictions.

Figure 5.15 compares the results of the higher acceleration tests. Here

both experiments show transition displaced further downstream than the

calculations predict, although the effect is small for the higher turbulence

case. Furthermore, this cannot be correlated with the the anisotropy.

However, by comparing the calculations with those at K=0.2 x 10 "6, it is

clear that the calculations have responded to the acceleration in the right

direction (ie. the predicted transition location has moved downstream).

Also, it will be noted that once again, in the fully turbulent region the Lam-

Bremhorst model under predicts the heat transfer.
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Also documented in Blair and Werle's report are the displacement

thickness 6", the momentum thickness 0, and the shape factor 8*/0. These

was measured at various locations along the test section, allowing an

alternative comparison between experiment and predictions during

transition. Examples of this for grids 1 and 2 at K-0.2 x 10-6 are shown in

Fig. 5.16, where 8* and 0 are compared with experiment, and in Fig. 5.17,

where the variation in shape factor is compared. For the higher turbulence

case of grid 2, only small differences are apparent in both figures, the most

pronounced being the quicker change in the shape factor. However, a larger

difference is seen for grid 1 where the free-stream turbulence effects do not

dominate. In this case, the shape factor found computationally begins to

change earlier and also undergoes a more gradual change than the data. This

difference is somewhat surprising considering the close agreement in the heat

transfer results for this case. Unfortunately, no explanation of this result can

be given at this time.

5.2.3 Data of Rued

This data was taken in the same basic facility as described in section

5.1.2. To introduce acceleration, the channel boundary opposite the test

section was modified by installing two different and specially contoured

walls. Flow conditions were then varied to achieve a variety of different

acceleration conditions over the test section. As representative of these

results, three of the data sets were chosen for use in this eveluation. These

correspond in Rued's specification to Nr 6, Nr 10, and Nr 12. Figure 5.18

shows the experimentally measured variation in the acceleration parameter K
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for each of these conditions. Also shown are the smoothed continuous repre-

sentations used in the calculations. Nr 6 is seen to be similar to the higher

acceleration conditions of Blair since the variation in K is not very great over

the test section. Conditions of this type are similar in many respects to typical

behavior on the pressure side of a turbine blade. However, Nr 10 and 12 are

very different, producing a very strong region of acceleration over the first

two-thirds of the test section followed by a rapid relaxation to a region of

very small negative acceleration. These conditions are designed to provide a

closer approximation to the acceleration characteristics on the suction side of

a typical blade. The maximum K produced in Nr. 12 is eight times as great as

the acceleration in Blair's strongest case. The corresponding velocity

distribution for each of these cases, together with the approximations used in

the calculations is shown in Fig. 5.19.

Figures 5.20 and 5.21 show the experimentally measured total

turbulence intensity distributions over the test section produced by the grids

for these conditions. The estimated uncertainties in the measurements are

also shown to illustrate how the uncertainty increased significantly for the

larger the turbulence intensity conditions. Note that separate figures for the

stream-wise turbulence intensity are not shown as was done before. This is

because Rued did not document the individual components for experiments

with acceleration. Only the net Tue, r was reported.

As was discussed in section 5.2.1, a k-e model is not able to reproduce

these conditions exactly. The solid curves shown indicate the decay as

calculated using equations 2.35 and 2.36 and which were used in the

calculations. In each case, the initial turbulent kinetic energy was chosen so
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as to correspond to Tue,T at the upper bound of the uncertainty for that grid.

However, the dashed line in Fig 5.20 for the grid 4 conditions illustrates that

after a short region, this choice makes little difference. In all cases the major

error in free-stream turbulence intensity occurs in the region centered about

x=. 1 meter. Table 5.5 lists the actual starting conditions for k¢, ee and Tu

which correspond to the calculations shown.

TABLE 5.5 Free-Stream Turbulence Conditions Specified in Computing
the Pressure Gradient Flows of Rued [72]

Experiment

Nr 6, Grid 1

Nr 6, Grid 2

Nr 6, Grid 3

Nr 6, Grid 4

at x=0 at x=.4 m

-Tu;;;..... ....Tu;;;"....
2.63%

4.30%

8.33%

12.1%

2.481

6.632

24.89

52.51

320

2290

26600

39500

0.75%

0.92%

1.12%

1.91%

Nr 10, Grid 1

Nr 10, Grid 2

Nr 10, Grid 3

Nr 10, Grid 4

2.88%

3.95%

7.73%

11.13%

2.810

5.280

20.22

41.92

720

1200

5040

24000

0.63%

0.89%

1.68%

1.87%

Nr 12, Grid 1

Nr 12, Grid 2

Nr 12, Grid 3

Nr 12, Grid4

2.88%

3.95%

7.73%

11.13%

0.874

1.644

6.294

13.05

126

210

882

4200

0.63%

0.89%

1.70%

1.87%
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Figure 5.22 compares the calculations with the data for each of the

four grids in Nr 6. Because of the complexity of the flow, it is not as easy to

clearly distinguish laminar, turbulent, and transitional regions in the data.

Grid 1, shows the clearest identifiable transition region, which extends over

almost the entire length of the plate. This is very accurately reproduced by

the model. The only real discrepancy occurs in the region immediately

subsequent to the start of the cooled section. This under-prediction over the

first 15-20% of the cooled test section was characteristic of all the

calculations made of Rued's acceleration data. Careful examination of the

grid 2-4 data from x=.05 to .1 m, shows that although only small differences

occur in the data, a transitional effect is manifest. However, the overall

magnitude of the heat transfer in the region is more characteristic of a near

turbulent boundary-layer becoming fully turbulent, than a laminar

boundary-layer becoming turbulent. The calculations do not reproduce this,

and show a clear transition from very laminar-like state up to the turbulent

level in this region. This seems to indicate a deficiency in predicting the

character of the "pseudo-laminar" boundary layer more than a deficiency in

the correct location and extent of transition.

The comparison between the calculations and the data from Nr 10 is

given in Fig. 5.23. Here the characteristic initial under-prediction is also

indicated. However, the introduction of strong acceleration followed by a

rapid relaxation (see figure 5.18) provides some very interesting additional

insight into the response of the model. When Tue is high, as for grids 3 and

4, the model quite accurately represents the somewhat modified but still
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turbulent region during the high acceleration. After the acceleration is

relaxed, although there is a slight increase, the data is still reproduced quite

well. However, as the turbulence intensity decreases, the model shows a

higher sensitivity the the acceleration than the experiment, and a
/

relaminarization is shown for the grid 2 cases which is not reflected in the

data. Once the acceleration is removed, the calculation moves quickly back

in line with the data. At the lowest turbulence intensity, the model once

again correctly reproduces the acceleration effects, but when the acceleration

is removed, a too rapid rise back to the turbulent state is predicted. This

figure illustrates the complex interaction between the competing effects of

high free-stream turbulence and rapidly changing but large negative pressure

gradients that are so difficult to predict. The relative success of the model at

predicting most of these trends correctly without any additional

modifications is very encouraging.

In Figure 5.24, the calculations are compared to the data from Nr 12.

Recall that this test has the highest acceleration of all. Interestingly, it is also

the most well predicted by the model. Except for the under-prediction in the

initial region (which however is not as pronounced as before), the model

predicts the data for each turbulence level very accurately. Note that both the

start, the path, and the length of transition is well reproduced. The faithful

reproduction of this set of data is one of the most outstanding successes of the

model.
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5.2.4 Summary of the Prediction Capabilities for Flows with
Acceleration

With respect to the overall predictive capabilities of the model, the

following items can serve as a summary of what the comparisons made in this

section seem to indicate.

1. Transition under the combined influence of both free-stream

turbulence and low constant favorable pressure gradients (K_-.2 x 10 6) is

predicted very well by the model. This includes not only the location but also

the extent over which it occurs.

2. For flows with moderate constant acceleration, comparison with

experiments indicates that the model tends to under predict the length over

which transition occurs, but not severely. The location of the start also tends

to be predicted somewhat early. These are qualitative errors only, as the

quantitative trends are very well reproduced.

3. A consistent under prediction of the heat transfer near the leading

edge of the boundary layer was observed in all of the experiments where both

high increasing acceleration and high free-stream turbulence intensity were

present. However, as the ratio of acceleration to free-stream turbulence

increases, this difference tends to diminish. Examination of the data seems to

indicate transition beginning with the boundary layer already in a nearly

turbulent state. This contrasts with the model which allows only a limited

variation from the laminar state prior to transition.

4. Apart from the initial region mentioned in 3., the competing effects

of both strong acceleration and free-stream turbulence on transition were
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accurately predicted for all but two cases,both at moderate to low turbulence

intensity. In one case the model predicted a partial relaminafization, while

the data did not. In the other case, the length of the transition region was

under predicted.

5.3 Turbine Blade Cascade Data

The major motivation for the work presented in this thesis is the need

for a reliable engineering tool for predicting the effect of transition on heat

transfer on gas turbine blades. Thus to complete the examination of the

transition model developed here, it is appropriate that calculations be

performed for a number of turbine blade cascade data sets. However, before

doing so we must recognize that only two of the major factors affecting

transition on a turbine blade have so far been considered in the development

of the model. These two, free-stream turbulence and pressure gradients, are

usually the most dominant, but significant effects with respect to other

factors must be neglected at this point in order to perform a calculation. Two

of the most notable of these are the effects of curvature, and the proper

calculation of the flow in a stagnation region.

The data to be considered here is the data of Daniels [19], and the data

of Hylton et al [34] for the blade they designated as "C3X". Two flow

conditions over each blade will be considered, both on the suction side and

the pressure side. This yields eight separate runs with which to compare our

numerical model. Before introducing the details of these, we will first
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consider some of the additional complexities and problems associated with

these calculations.

5.3.1 Preliminary Comments about the Calculations

Comprcssibili _tyand High Mach Number Effects:

In all of the flat plate cases discussed previously, the velocity has been

sufficiently low that compressibility effects were small. However, this is not

the case for typical turbine blades where inlet mach numbers may be low, but

exit mach numbers frequently exceed one. To account for this, a state

equation must be included in the calculations to provide for the proper

description of the gas under different temperatures and pressures. For the

data to be considered here, the working gas was essentially air, and the ideal

gas law is used in the calculations. Also, viscous dissipation terms must be

included in the energy equation to account for the conversion of mechanical

energy to thermal energy which will occur in areas of high shear. The

resulting form of the energy equation expressed in terms of the total

enthalpy H was previously given in Chapter 2, eq. (2.7).

An appropriate Stanton number to be used in presenting the results for

high speed flow is defined in terms of the total enthalpy as follows;

qw (5.4)
St= peUe[H w -He]
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Property Variations;

In addition to large pressure changes that occur in the streamwise

direction, large temperature gradients will occur across the boundary layer.

For the data of Daniels, the total wall to free-stream temperature ratio was

0.67. For the Hilton et al's C3X blade conditions that we will consider, it was

about .8. Thus the physical properties of air must be continuously varied on

a local basis to properly account for this.

For computational purposes, simple temperature dependent equations

were applied to calculate various properties of interest. These are given in

the appendix together with plots showing how well they compare to

experiment.

Blade Geometry and Velocity Profiles:

The geometry of each blade together with the operating conditions

determine the free-stream velocity around each surface. In the work

reported by Hylton et al., a two dimensional invisid numerical method

developed by Delaney [21] was used to predict the free-stream flow field.

This was then compared with the experimental data to confirm the results.

Since the results of this calculation for the C3X blade were made available in

the appendix of their report, these free-stream velocities were used for the

purposes of the calculations made here. For Daniel's blade, the experimental

velocity data reported was functionally approximated by a series of
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polynomials to produce a smooth continuous representation of the data. The

match points were required to be continuous through the first derivative.

The velocity profiles for both of these blades are shown for the suction side

in Fig 5.25, and the pressure side in Fig. 5.26.

In the calculations that will be presented, curvature effects will not be

introduced. This implies that although the calculations proceed over a

streamwise distance which corresponds to traveling around the curved

surface of the blade, they do not include additional terms or corrections to

otherwise account for the curvature. When the ratio of the boundary-layer

thickness to the radius of curvature is small, and the local free-stream

velocity is accurately specified, this approximation is fairy good. However,

this is not always the case, and it is the opinion of this author that the

appropriate incorporation of these effects will need to be addressed in the

future. For now, this must be reserved for later consideration.

In the figures, the streamwise coordinate around the blade will be

represented with the letter S.

5.3.2 Comparison with the Data of Daniels

Two different flow conditions are selected from the data of Daniels[19]

for evaluation here. Following Daniels and Browne [20], these are designated

with respect to the design operating conditions as ReD ( design Reynolds

number) and Re +, (ie. a higher flow rate yielding a Reynolds number greater

than the design condition). The free stream turbulence intensity measured

upstream of the blade was 4.2%. At the actual location of the blade, Rodi and
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Scheuerer estimated this to have decayed to about 3% based on empirical

decay rates given in Townsend [86]. However, Daniels and Browne appear

to have applied the value of 4% in their numerical calculations presented in

[20]. For comparison, calculations will be presented here assuming free-

stream turbulence levels of both 3 % and 3.5 %.

In Figures 5.27 and 5.28, the calculations are compared to the actual

experimental data. As can be seen, the location and extent of transition as

represented in the heat transfer is very well predicted for these cases. Also,

the only place the 3% vrs 3.5% Tu e difference matters is for the design

Reynolds number case, and here the two calculations bracket the

experimental data. The only significant variation between the data and the

computation occurs at the higher Reynolds number in regions downstream

of transition. This occurs on both the suction and the pressure side.

5.3.3 Comparison with the C3X blade of Hylton et al.

In Figures 5.29 and 5.30, comparisons with the data of Hylton et a1.[34]

are shown. The conditions considered correspond to runs 145 and 149 in

their designation. These calculations show trends similar to those pointed out

on the Daniels and Browne data, i.e., an excellent prediction of the lower

Reynolds number data, but some discrepancies with the higher Reynolds

number data. In particular, after transition begins on the suction surface of

run 145, the calculations show a very large overshoot as compared to the

data. Since this degree of error was observed in any of the previous runs, an

effort was made to try and determine the source of the problem. One
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explanation that initially seemed reasonable, has to do with the response of

the k-e model to adverse pressure gradient conditions. On the suction side

starting at a point just after transition has started for run 145, the flow

experiences a region of adverse pressure gradient. Previous research has

documented the failure of 2-eq. LRN models such as that of Lam-Bremhorst

to correctly calculate the near wail turbulence length scale in adverse

pressure gradient flows, resulting in an over prediction of the skin friction

and heat transfer (see[68]). Thus, for comparison, a computation is shown

where the dissipation equation was modified in line with a suggestion of

Launder [46] in the following manner.

CI"1.44*max( 1, L/Lmax)

where

l.,=kl.5/e , Lmax=2.7y (5.5)

The effect of this modification is to prevent the model from producing a near

wall length scale more than a few percent over that observed experimentally.

As shown in the figure, the results of this additional modification show an

improved prediction of the heat transfer on the suction side without

influencing the transition predictions. Unfortunately, when more general

testing of the modification was made, it also affected ( this time adversely)

the fully turbulent results for calculations without pressure gradients, albeit

to a lesser degree. Thus, at best, the adverse pressure gradient problem is

only a partial answer.
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The results of the modified calculation are presented despite their limited

validity to help distinguish between the error due to the fully turbulent

model, and that due to the transition predictions. In the case of run 145, even

if the fully turbulent calculations were corrected as shown, there still remains

a significant overshoot as compared to the data. At this point a clearly

justifiable explanation of this is not known to the author. However, one

plausible possibility is that these effects are due to a somewhat delayed

curvature influence similar to what occurs in the so-called recovery region

after the release of curvature in a fully turbulent boundary layer. This was

briefly mentioned in section 1.2.5 of chapter 1. Since on the C3X blade the

radius of curvature is small until about S/arc =.2, which is just as transition is

beginning, it seems possible that the transition is being influenced by this

effect.

5.3.3 Brief Summary of the Turbine Blade Data Predictions

Although this comparison has been somewhat limited, two important

comments can be made in summary.

(1) With respect to the streamwise location, of the 8 specific runs

compared, in 7 of them the correct start and length of transition was

predicted. For the one case where this was not true, although the length was

in significant error, the starting location was only slightly different than the

experiments. ( Note that we are not considering differences in the fully

turbulent region here)
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(2) For both blades, the accuracy of the heat transfer predictions in the

fully turbulent region diminished as the blade Reynolds number was

increased. This was manifest in an over prediction of the heat transfer.

However, all aspects of the four lower Reynolds number cases were

predicted with good accuracy.
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CHAPTER SIX

CONCLUDING REMARKS

6.1 CONTRIBUTIONS OF THIS WORK

In concluding this thesis, it is important to review the work completed

and summarize the important things learned and accomplished. In the

estimation of the author, the following items are the most significant

contributions of this work.

(1) The first thorough evaluation of two contrasting LRN k-e turbulence

models relative to predicting transition has been made and

documented. In doing so, the importance of initial starting profiles

and the initial starting location has been quantified. Also, the

shortcomings of these models in predicting both the correct start and

length of transition have been clearly pointed out and quantified for

free-stream turbulence intensities of from less than 1% to 6%.

(2) The mechanism by which transition is simulated in these models has

been delineated and related to the results of the evaluation just

mentioned. In doing so, some of the differences between the model's

predictions have been traced to specific differences in the low-

Reynolds number functions adopted.
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(3) A defect in the Lam-Bremhorst f_t formulation was shown to be

responsible for the failure of the Lam-Brernhorst model to predict

transition at low free-stream turbulence intensities. This has led to a

simple modification to eliminate this problem which does not affect the

predictions for fully turbulent flow.

(4) A simple modification limiting the production term in the k equation

has been developed and tested to improve the transition predictions.

This modification was shown to be sufficiently general to be applicable

to any k-E LRN model. After calibration of the two empirical

parameters, the "PTM" forms of the both the Lam-Bremhorst and

Jones-Launder models were shown to yield transition predictions in

accord with the correlation of Abu-Ghannam and Shaw for both the

start and the end of transition. Also, after the addition of this

modification the sensitivity of the calculations to the initial starting

location was reduced. This was especially so for the Lam-Bremhorst

model implementation.

(5) The PTM form of the Lam-Bremhorst model has been thoroughly

tested against a large number of test cases in order to clearly document

it's prediction capabilities both in terms of accuracy and reliability.

These included flows both with and without pressure gradients,

including a number turbine blade experiments. The results of these

tests showed excellent agreement in terms of heat transfer predictions

with most of these experiments. Furthermore, the wide range of the

comparison is hoped to be sufficient to provide two additional benefits;
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i) Instill confidence in the ability of k-e LRN modeling to reliably

and consistently predict transition as well and in many casesbetter

than the more traditionally used mixing length type of models.

ii) Provide clear guidance for further improvements.

6.2 LIMITATIONS OF THE APPROACH DEVELOPED

The approach developed in this thesis should be viewed as a practical

engineering tool, for it clearly is not a rigorous mathematical model of the

physics of transition. However, because a greater degree of meaningful

physical phenomenology is naturally accounted for by working within the k-

e approach, the author believes that this type of model is certainly more

general then say, the mixing length approach. An example of this is the

relative success of this model in predicting transition in the accelerating flow

cases without any additional changes.

The following limitations that are inherent in this approach should be

kept in mind.

(1) The method has only been demonstrated for use in wall bounded shear

flows.

(2) The method can only be as accurate as the correlation upon which the

parameters A and B are calibrated.

(3) The transition model has no salutary effect on fully turbulent con-

ditions where the k-E model has previously demonstrated deficiencies.

(4) Since the model is driven by the free-stream turbulence intensity,

limitations on the ability of the k-e model to accurately predict this - as
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was shown to occur under high acceleration - also effect the transition

predictions to some extent.

6.3 THOUGHTS ABOUT FURTHER RESEARCH

The comparisons made with experiment pointed out a number of areas

that could be investigated and which would probably lead to improvements in

the approach developed here. In particular, the transition predictions for a

moderate constant acceleration showed the tendency to under predict the

length of transition. This might be improved by introducing a small pressure

gradient effect into the A parameter. Also, the correlation of Abu-Ghannam

and Shaw could be justifiably evaluated and updated in terms of the more

extensive data that is now available, especially at higher turbulence

intensities. Any improvement there would of course lead to an improved

calibration of the transition parameters. This may also shed light on the

failure of the model to adequately reproduce the heat transfer data reported

by Rued near the leading edge of his pressure gradient tests. Finally, it is

important that the effects of curvature on transition be clearly determined

and appropriately incorporated into the models.

In addition to what some might consider the somewhat external

approach or path taken in this thesis, a more fundamental look at developing

better LRN functions themselves may provide even greater improvement and

a more general method than has been demonstrated here. One motivation for

this lies in the close analogy that exists between the processes observed in

near wall behavior, and those observed in transitional boundary layers.
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Since a number of aspects of near wall behavior are still not predicted well by

current two-equation models( see for example Bernard [7]), improvements

in these areas may also have a salutary effect on the transition prediction

capabilities of thesemodels.
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Appendix A1

The Computer Code

The computer code used to perform the calculations in this work is

documented here. This will begin with a brief description of the code and of

the major FORTRAN variables and arrays. Next, a complete FORTRAN

listing of each of the routines which make up the code will be given. Finally,

a number of representative input decks will be listed.

A Brief Description of the Code

The computer code used has two major divisions. The first part, called

program MAIN, serves as the driver for the solution procedure. It also

contains that portion of the code which is not dependent upon the specifics of

the problem at hand, but rather is dictated by the general nature of the

parabolic equations themselves. This part of the program was not developed

by the author. It was simply adapted with, minor changes from the general

purpose parabolic computer code made available to students at the University

of Minnesota who take Professor Suhas Patankar's course ME 8353. It is a

FORTRAN implementation of the basic solution techniques explained in [61].

Since excellent documentation of this portion of the code is readily available

through professor Patankar, a detailed description will not be given here.

However, a listing is provided here following all of the other subroutines.

Note that the utility routines UYGRID and PROFIL are located within MAIN

as entry statements.

The remaining portion of the code contains problem specific coding

(written of course within the framework required by part one). It is this part
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of the code which was written by the author, and this is where the

computational models developed in this thesis are implemented. A major

portion of this is contained within an umbrella subroutine called USER.

Although technically only one subroutine, numerous other subroutines are

effectively contained within this one large routine by appropriate use of

entry statements. This technique facilitates a shared set of common blocks

and variable information without eliminating the advantages of modular code

design and development.

Although the code itself is documented reasonably well, a brief

description of each of the subroutines and functions written for use in this

thesis will be given as follows. Note that for the purpose of this explanation,

calls to entry statements contained within subroutine USER, will be treated as

if they are separate subroutines themselves.

BOUND Five important things are accomplished in this subroutine.

(1) The transition model parameters A (TCI) and B
(DPKDTM) are calculated for the next step.

(2) Turbulent Reynolds numbers and the associated functions
and source terms in the k and e equations are calculated
for use during the next time step.

(3) The appropriate entrainment at the boundary is
calculated.

(4) Boundary conditions for U,H, k, and e are calculated.

(5) The pressure gradient and the step size are computed.

DENSE First, the temperature field is calculated from the associated
enthalpy values. Then, if constant properties are not being
assumed (ie.,LCSOL=.FALSE.), all material properties
(including the density) are calculated here as functions of
temperature. The functional approximations used are given in
appendix A2
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ENTRAIN

GAMSOR

OUTPUT

PROFIL

RCURVE

RUNGA

START

TRANS

USER

This subroutine (called from BOUND) calculates an appro-
priate entrainment value based on either the velocity and/or
the enthalpy profiles. Note that the purpose of this is to expand
the computational domain in response to the growth of the
boundary layers.

The diffusion coefficients and source terms for each of the

transport equations are calculated here.

This subroutine provides the means of writing out to data files
the important calculated quantities of interest. These include
the heat transfer and skin friction coefficients, profile data,
and integral parameters such as the momentum thickness.

Simple utility routine to output the profiles of the calculated
quantities of interest. Located as an entry statement routine
within MAIN.

Subroutine provided to calculate and retum the localradius of
curvature. This was not used in the work presented in this
thesis since curvature effects were neglected.

Uses a simple fourth order Runga-Kutta scheme to integrate
ordinary differential equations. This FORTRAN coding was
taken directly from reference [94]. It is used to fred the
upstream boundary conditions for k and e as the solution
procedure advances ( See eqs. (2.35) and (2.36)).

Sets the initial starting profiles and boundary conditions for k,

E, and H. Also gives starting v-dues to a number of
miscellaneous parameters.

Calculates the nondimensional values of the transition

parameters A (TCD and B (DPK) as a function of the local
free-stream turbulence intensity

Sets the values to constants, reads the input data (which will

control the computation) from a data file, specifies the
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UYGR_

computational grid, and calculates the starting velocity
profile.

Utility routine to set the appropriate stream function values
between control volumes once the velocity profile has been set.
It is located as an entry statement routine within MAIN.

VELPROF Calculates the appropriate values for velocity at each control
volume in accordance with a Pohlhausen velocity profile. This
is used to generate a starting velocity profile

FMU (function)

F1 (function)

F2 (function)

UM1 (function)

Returns the value of the LRN function fm

Returns the value of the LRN function fl

Returns the value of the LRN function f2

Returns the value of the free-stream velocity as a function
of streamwise distance. This of course is completely
problem dependent and must be written uniquely for each
problem solved.

Definitions of FORTRAN variables and arrays

A1

AGRID

An(J)

AHTC

AJTI(NF)

AK(J)

AMU(J)

The parameter al in equation (2.39) used in specifying the

initial starting e profile.

1"1as defined in eq. (2.29)

Total enthalpy at location J

Local Heat Transfer Coefficient h

The calculated total flux at the wall boundary for the

dependent variable F(J,NF). Note NF=I corresponds to the

momentum flux (wall shear stress), and NF-4 corresponds

to the wall enthalpy (heat) flux

Turbulent kinetic energy at location J

The molecular viscosity at location J
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AMU0

AMUT(J)

AP(J)

C1

C2

O2

CF

CGRID

COMMENT

CON(J)

CP(J)

CPAVG

CPO,CP1,...

CRVM

CU

D99

DEL

DELT

Average viscosity of the starting profile

Turbulent viscosity at location J

In subroutine GAMSOR, it is set equal to the negative part

of the source term - of whichever variable's equation is

currently being solved - divided by the current local value

of that variable. (See section on source term linearization in

[61]) It is further modified in MAIN.

A Small Number. Set equal to 1.e-20

Constants in a polynomial approximation of the thermal

conductivity

The turbulence model constant C 1

The turbulence model constant C 2

Input parameter that is not currently used

Coefficient of friction

The grid generation quantity rl(b-1)(z1)b. See eq. (2.28)

General purpose character variable used mainly for input

The positive part of the source term of whichever equation

is currently being solved

The specific heat at location J

.5*(CP(M1) + CP(1))

Constants in a polynomial approximation of the specific heat

Input parameter that is not currently used

The turbulence model constant C_t

99% boundary layer thickness (based on velocity)

The boundary layer thickness specified in the input file at

the starting location

The thermal boundary layer thickness specified in the input

file at the starting location
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DELTAT

DEN

DEN1

DGRID

DL1

DL2

DLS

DPDSC

DPK

DPKDTM

DPKDTM0

DUI(J)

DUDS

DUDSP

DX

DXFC

DYM

DYP

E(J)

EIN

Temperature difference across the boundary layer

Average density of the starting profile

DYP + R2*DYM , Used in calculating DU 1(J)

Grid generation quantity (b-1)(x1)b. See eq. (2.29)

Displacement thickness

Momentum thickness

A Dissipation Length Scale. See line 306

UM10*DUDSP

The maximum increase in Pk allowed over the next forward

step. This is found through the transition model. See lines

438-439 and eqs. (4.6) and (4.7)

Dimensional value of the transition model parameter B. It is
calculated in line 393 from DPKDTM0

Nondimensional value of the transition model parameter B.

It is calculated by TRANS as a function of Tu and shown in

Figure 4.9

Velocity gradient dU/dY at location J

Free-stream velocity gradient in the stream-wise direction

RHO(M1)*DUDS

Computational step size in the streamwise direction

The step size in the streamwise direction is calculated as

DX=DXFC*DL2 (DL2=momentum thickness)

Y(J)- Y(J-1)

Y(J+I)- Y(J)

Dissipation rate at location J

Input value of the free-stream dissipation at the starting
location
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EKI

ENEXP

F(J,NF)

HLNAME

FKE(N)

FRAC

FSCON

GEXP

GGRID

GX1

HTC

IPP

ISTEP

The exponent "n" in equation (2.38) used in specifying the

initial starting k profile.

An exponent used in the entrainment calculation. Called

POWER in subroutine ENTRAIN, it affects how strongly

the calculation responds to changes in the near free-stream

profile

The general dependent variable matrix. Note that NF=I-11

have been equivalenced to other arrays

Input character array containing the names of input and

output files used in the calculation

For N--l, dl_dx. For N=2, dEe/dx

An entrainment parameter used in specifying the desired

fractional difference between the last few nodes at the outer

edge of the boundary layer. See subroutine ENTRAIN

If RE2<RE2C, FSCON=0, else FSCON=I. Multiplying

the positive source term in the k equation, it implements part

of the transition model developed.

The exponent "b" associated with the grid generation. See

Chapter two, equations (2.25) through(2.29)

The grid generation quantity 11[b (z1)b-1]. See eq. (2.28)

The matching point Zl(in terms of the grid coordinate _)

used in the grid generation. See chapter two, equations

(2.25) through(2.29)

An input parameter that is not currently used

ISTEP must be greater than IPP before PROFIL can be

called

Integer counter keeping track of the number of forward

steps taken
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ITBFLG

ITM

IWTBC

JUMP1

JUMP2

JUMPT

KBCI(NF)

KCM

KCRM

KENT

KEX

KIN

LASTEP

Integer flag set equal to 1 once the transition model requires
information from subroutine TRANS. This occurs when
RE2 exceedsRE2C.

Input parameter which if set equal to 0, prevents transition
to turbulence by setting DPKDTM=0 and skipping the calls
to subroutine TRANS

Specifies the type of Wall Thermal Boundary Condition. If
IWTBC=I, a specified wall temperature is assumed. Else, a
specified wall heat flux is assumed.

Every JUMP1 forward steps, subroutine PROFIL is called

Every JUMP2 forward steps, a small number of specified
quantities are printed out to monitor the calculation

Every JUMPT forward steps, the transition parameters are
updated by calling subroutine TRANS. Only implemented
if ITBFLG=I

Boundary condition index for the inner boundary required

by MAIN. =1 for a given value, =2 for a given flux, =3

for the total flux expressed in the form (a-l:@l)

Input parameter which is not currently used

Curvature flag not used in this version of the code

Integer value f'Lxing the profile(s) used in the entrainment

calculation. If KENT=I, the velocity profile is used. If

KENT--4, the enthalpy profile is used. Any other value and

both profdes are used.

Outer boundary condition index used by MAIN. It is set

equal to 2 indicating the outer edge is a free boundary

Inner boundary condition index used by MAIN. It is set

equal to I indicating the inner boundary is a wall

The largest allowable number of forward steps allowed

before stopping the calculation
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LCPSOL

LPRINT(NF)

LSOLVE(NF)

LSTOP

M1

NDPTS

NP2

OMEGA

PRO)

PRO

PRDR

PRESS

PRT

PRT

R2

RC

RCON

RE2

Logical input parameter. If .TRUE., material properties

are considered constant and set equal to their respective

values at T-TAVG. If .FALSE., material properties are

calculated as functions of temperature in subroutine DENSE

Logical input array. When .TRUE., the profile of F(J,NF)

is printed out whenever subroutine PROFIL is called

Logical input array. When .TRUE., the differential

equation for F(J,NF) is solved.

Logical variable which if set equal to .TRUE. will terminate
the calculation in MAIN.

The total number of grid points in the cross stream direction

Integer counter keeping track of how many times certain

data has been written out to a f'de. See lines 309-310

Integer counter associated with RE2P. See lines 295-298

The acceleration parameter A=62U'/v used in calculating

the initial starting profile for the velocity. It must be

specified in the input. See Chapter Two, section 2.3.3

The Prandtl number at location J

Average Prandtl number of the starting profile

PRESS / RCON

The local pressure. Must be specified in the input file at the

starting location

The turbulent Prandfl number

The turbulent Prandtl number

(DYP/DYM)**2

Radius of curvature. Not used in this version of the code

Gas constant in the ideal gas law

Momentum thickness Reynolds number
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RE2C

RE2F

RE2P(N)

REP

REPFC

REPI

REX

RFILE

RHO(J)

RME

SCE(J)

SCEMF

SCK(J)

SCONB

SCONS

SCU

The critical momentum thickness Reynolds number below

which the modeled production term is set equal to zero.

If Re 0 exceeds RE2F, the calculation will stop

Input array containing the specified values of the momen-

tum thickness Reynolds numbers at which all calculated

quantities and prof'des are to be written out to a file

When Rex=REP, computed boundary layer properties and

parameters are writing out. REP is then increased to the

next desired value (See REPFC)

REP is incremented such that over every 1 cycle logarithmic

increase in Re x , boundary layer properties are printed out

REPFC times. See line 308 of the subroutine USER listing

The first value assigned to REP. Given in the input f'de

Reynolds number based on x

Character variable read in the input f'tle which is not used in
this version of the code.

Density at location J

Free-stream boundary entrainment rate. This is what is

controlled through subroutine ENTRAIN

Positive source term(s) in the E equation at location J

Set equal to m.ax(1.,L/Lmax), see eq. (5.5). However, this

effect is suppressed by setting AKAPI extremely small in

line 178 (in eq. (5.5) it is 2.7), thus SCEMF is always equal

to one in this version of the code

Positive source term(s) in the k equation at location J

Constant in the viscosity approximation

Constant in the viscosity approximation

Local variable used in GAMSOR. If DPDSC < 0, SCU=0,

else SCU=DPDSC
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SE

SI(J)

SK

SK1

SKC

SPE(J)

SPK(J)

SPU

STAN

T(J)

TAVG

TCI

TCI0

TCOND

TINF

TITLE(NF)

TK

TRE(J)

TU

TUINF

TW

The turbulence model constant a,

Used in calculating the source term in the enthalpy equation

The turbulence model constant Ok

holds the local value of P-t( ""_-)2Temporarily See line
oy

436

FSCON * SKI

Negative source term(s) in the e equation at location J

Negative source term(s) in the k equation at location J

Local variable used in GAMSOR. If DPDSC < 0,

SPU=DUDSP, else SPU=0

Stanton Number

The temperature at location J

(TW+TINF)/2

Dimensional value of the transition model parameter A. It is
calculated in line 394 from TCI0

Nondimensional value of the transition model parameter A.

It is calculated by TRANS as a function of Tu and shown in

Figure 4.8

Thermal conductivity

The free-stream value of the temperature

Character input array containing the specified tides of each

F(J,NF) profile. Used in PROFIL when printing

Temperature in deg K

The turbulent Reynolds number Re t at location J

Input value of the free-stream turbulence intensity at the

starting location

Free-stream Turbulence intensity

The temperature at the wall
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u(J)

UFRIC

UHSL

UINF

UJ

UJD

UMI0

UPLS(J)

UUI

VINF

WTOHF

XU

XUF

XUI

XUNEW

Y(J)

YCVM(J)

YCVP(J)

YKE(N)

YPLS(J)

YPLSCAL

YRE(J)

Streamwise velocity at location J

Friction velocity

Unheated or uncooled starting length.

Free-Stream Velocity

U(J) / U(M1)

UJ * RHO(J) /RHO(M1). Used in calculating DL1

Free-stream velocity of the previous step

U+ at location J

The coordinate X used in generating the grid. See eq. (2.23)

An input variable which is not used in this version of the
code

Either the specified wall temperature (IWTBC=I) or heat

flux (IWTBC_el).

Streamwise location x

Input final or maximum value of the streamwise location x

Input starting value of the streamwise location x

Streamwise location x at the next step

The cross-stream distance y at location J

Distance between the grid point J and the lower edge of the
control volume J. Referred to in documentation for

subroutine MAIN as Ay"

Distance between the grid point J and the upper edge of the
control volume J. Referred to in documentation for

subroutine MAIN as Ay +

The free-stream value of k (N-l) or dissipation rate (N=2)

y+ at location J

Variable used in calculating YPLS(J). See lines 282,288

The turbulent Reynolds number Rey at location J
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A Listing of the Subroutines and Functions

1

2

3

4

5
6

7

8
9

IO
ii
12

13
14

15

16
17

18
19
20

21
22

23

24

25
26

27

28

29

30

31
32

33

34

35
36

37

38
39

40
41

42

43

44

45
46
47

48

****************************************************************

SUBROUTINE USER
C

LOGICAL LSTOP, LPR, LGPG, LTIME, LSOLVE, LPRINT, LCPSOL

CHARACTER TITLE (13) *7, CO_4ENT*60, FILNAME (4) *25, RFILE*40

C05_ON F (99, ii) ,RHO (99) ,GAM(99) ,CON(99) ,
1 AP (99) ,AN(99),AS (99),PT (99) ,QT(99),RT (99) ,

2 OM (99) ,OMF (99) ,OMFI (99) ,OMCV (99) ,Y (99) ,

3 YF (99) ,YCVR (99) ,YCVP (99) ,YCVM (99) ,R(99) ,
4 RF (99) ,FLO (99)

CO_4ON /INDX/ NF, NFMAX, NU, NRHO, NGAM, MI, M2, KIN, KEX, DPDX,

1 ISTEP, LASTEP, MODE, ITMX, LGPG, LTIME, XU, DX, XLAST,

2 PEI, PSII, PSIE, PSIT, YMI, POWER, CSALFA, RMI, RME, ARI, ARE

COMMON /VARB/ LSOLVE (11) ,LPRINT(13) ,
1 AJTI (11) ,AJTE (11) ,AFXI (11) ,BFXI (11) ,

2 AFXE (11) ,BFXE (11) ,KBCI (11) ,KBCE (11)
C_N /CHAR/ TITLE

C_N /CNTL/ LSTOP

C_N /COEF/ FLOW, DIFF,ACOF

DIMENSION SPK (99) ,SCK (99) ,SPE (99) ,SCE (99) ,SI (99)
DIMENSION YPLS (99) ,U (99) ,UPLS (99) ,AK (99) ,E (99) ,AH (99)
DIMENSION AMUT (99) ,DU1 (99) ,TRE (99) ,YRE (99) ,T (99) ,AMU (99)

DIMENSION PR (99) ,CP (99) ,YKE (2) ,FKE (2), RE2P (I0)

EQUIVALENCE (F(I,I),U(1)), (F(I,2),AK(1)), (F(I,3),E(1))

EQUIVALENCE (F (i, 4) ,AH (i)), (F (I, 5), T (I)), (F (I, 6), TRE (I))

EQUIVALENCE (F (I, 7) ,YRE (i)), (F (I, 8) ,AMUT (i)), (F(I, 9) ,YPLS (I))
EQUIVALENCE (F (i, i0) ,UPLS (i)), (F (I, Ii) ,DUI (i))

C, , ,,,,,,, e ,,, i,o,,,,,,,,,e,e ,,,,,,.,,, ,,,,,,,,,,.,,.,,,,,,,, t,,

C

C I. 00 -- SUBROUTINE "USER" OF A PROGRAM TO CALCULATE LAMINAR,

C TRANSITIONAL, AND TURBULENT BOUNDARY LAYER FLOWS UNDER THE
C INFLUENCE OF PRESSURE-GRADIENTS AND FREE-STREAM TURBULENCE. A
C SLIGHTLY MODIFIED FORM OF THE LAM-BREMHORST LOW-REYNOLDS-NUMBER

C K-e TURBULENCE MODEL IS EMPLOYED TOGETHER WITH THE ADDITIONAL

C MODIFICATIONS FOR TRANSITION DEVELOPED BY SCHMIDT AND PATANKAR

C THIS VERSION IS SET UP FORVARIABLE PROPERTIES OF AIR.

C ................... VERSION AS OF AUGUST, 1987 ..................

C ................... WRITTEN BY RODNEY C. SCHMIDT ...............

C,,,,,e,,,e.,.,e,,,,,e,,,,,,,,,,,,e eee,,,,,,,e,-,,,,ee'''''''''"

C

C

C

C

C

i.I0 CONSTANTS IN POLYNOMIAL APPROXIMATIONS OF THE THERMAL

CONDUCTIVITY AND SPECIFIC HEAT. ALSO "SUTHERLAND" VISCO-

SITY APPROXIMATION CONSTANTS AND THE GAS CONSTANT FOR AIR

DATA B0,B1,B2/2.41916E-2,7.3851E-5,-3.203E-8/

DATA B3,CP0,CP1/1.829e-11,1003.6,.01155/

DATA CP2,CP3, SCONB/5.453E-4,-4.2422E-7,1.465E-6/

DATA SCONS,RCON/110.4,287.0/

j_
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49

50

51

52

53
54

55

56

57

58
59

60

61

62
63

64
65

66

67
68

69

70

71
72

73

74

75

76
77

78

79

80
81

82

83

84

85

86

87

88

89

90

91
92

93

94

95

96

97

98

99
I00

I01

102

103

C

C

C

C

1.20 -- ASK FOR THE INPUT FILE NAME AND THEN READ THE RUN

PARAMETERS FROM THE INPUT FILE

PRINT*, 'INPUT THE NAME OF THE INPUT FILE'

READ*, C(I_MENT

OPEN (UNIT=I, FILE=CCX_MENT)
READ (i, *) CO_qENT

READ(l,*) (FILNAME (I), I=l, 4)

READ(l,*) COMMENT

READ(l,*) (LSOLVE (I), I=l, 4)
READ (i, *) CO_e4ENT

READ(l,*) (LPRINT (I), I--l,Ii)

READ(l,*) C(Xa4ENT
READ(l,*) (TITLE (I), I=l, ii)

(i, *) C_NT
READ(l,*) (RE2P (I), I=l, I0)

READ (I, *) C_NT

READ (i,*) LASTEP, JUMPI,JUMP2,IPP, JUMPT
READ (i, *) COF_4ENT

READ(l,*) KENT, HTC, ITM, LCPSOL

READ (i, *) C_NT

READ (i,*) TU, EIN, XUI,XUF,RE2F,RE2C

READ (I, *) C_NT
READ (i,*) PRESS, VINF

READ (i, *) COMMENT

READ (1, * ) IWTBC, PRT, TINF, TW, UHSL, WTOHF

READ(l,*) C_NT
READ (I,* ) M1, DEL, DELT, GEXP, GXl, EKI, A1, DXFC, REPI, REPFC

READ (i, *) C_NT
READ (i, *) CU, CI, C2, SK, SE, CC, CRVM

READ (i, *) COgeNT

READ (I, *) OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE

CLOSE (UNIT=I)

PRINT*, 'LOW REYNOLDS NUMBER FUNCTIONS OF LAM AND BREMHORST'

INITIAL DENSITY AND VISCOSITY-- CALCULATE

C

C 1.30

C

PRDR=PRESS/RCON

TAVG=(TW+TINF)/2.

TK=TAVG+273.15

DEN=PRDR/TK
AMU0=SCONB*TK**I.5 / (SCONS+TK)

TCOND=B0+BI*TAVG+B2*TAVG*TAVG+B3*TAVG*TAVG*TAVG

CP(MI)=CP0+CPI*TAVG+CP2*TAVG*TAVG+CP3*TAVG**3

PR0=AMU0*CP(MI)/TCOND

DO i00 J=I,MI

RHO (J)=DEN

AMU (J)=AMU0
PR (J)=PRO

CP (J) =CP (MI)

I00 CONTINUE

1.40 -- SPECIFY THE GRID AND THE INITIAL VELOCITY PROFILE
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C

C

Ii0

XU=XUI

UINF=UMI (XU)

REX=XU*RHO (MI) *UINF/AMU (MI)
X (MI) =DELT

Y (I)=o.
DGRID= (GEXP-I.) *GXI**GEXP
AGRID=I. / (i.+DGRID)

GGRID=AGRID*GEXP*GXI** (GEXP-I)
CGRID=AGRID*DGRID

DO Ii0 J=2,MI-I

UUI= (FLOAT (J-i) -. 5) / (FLOAT (MI-2) )

Y (J)=UUI*GGRID*Y (MI)

IF (UUI. GT. GXI) Y (J) = (AGRID*UUI**GEXP+CGRID) *Y (MI)
CONTINUE

u (I)=0.

CALL VELPROF (DEL, OMEGA, UINF,MI, U, Y)
CALL UYGRID

RETURN

****************************************************************

C 2.00 ENTRY POINT FOR SUBROUTINE 'START'.

****************************************************************

ENTRY START

OPEN (UNIT=3, FILE=FILNAME (3})

OPEN (UNIT=4, FILE=FILNAME (4))
C

C 2.10 -- CALCULATE INITIAL BOUNDARY CONDITIONS FOR K AND E

C

AK (MI) =i. 5* (U(MI) *TU) **2

E (MI) =EIN

TRE (M1) =AK (M_l)**2*RHO (MI) / (AMU (MI) *E (MI))
C

C

C
2.20 --SPECIFY INITIAL PROFILES FOR K, E, & RELATED QUANTITIES

210

DO 210 J=2,MI-I

DYP=Y (J+l) -Y (J)
DYM=Y (J) -Y (J-I)

R2= (DYP/DYM) **2
DENI=DYP+R2*DYM

DUI (J) = (U (J+l) - (1-R2) *U (J) -R2*U (J-1) )/DEN1

AK (J)=AK (MI) * (U (J)/UINF) **EKI

E (J)=AI*AK (J) *DU1 (J)

IF (E (J) .LT.E (MI)) E (J)=E (MI)
TRE (J)=AK (J) **2*RHO (J)/ (AMU (J) *E (J))

YRE (J)=SQRT (AK (J)) *Y (J)*RHO (J)/AMU (J)

AMUT (J)=AMU (J) *CU*FMU (TRE (J), YRE (J)) *TRE (J)

CONTINUE

AK(1)=0.

E (1)=E (2)

AMUT(1)=0.

YPLS (i)=0.

UPLS (I)=0.

TRE (I)=0.

DU1 (M1) =0.
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C

C 2.30

C

215

C

C 2.40
C

C

C

C

C
C

C

C

-- SET INITIAL TEMPERATURE AND ENTHALPY PROFILES

T (i)=TW
IF (.NOT. LCPSOL) CP (I)=CP0+CPI*TW+CP2*TW*TW+CP3*TW**3

AH (i) =CP (I) *TW
DO 215 J=2,MI

YY=Y (J)/DELT

T (J)=TW+ (TINF-TW) * (2. *YY-2. *YY**3+YY**4+OMEGA/6. *YY

• (I.-YY)**3)
SAH=CP (J) *T (J)

IF (.NOT.LCPSOL) THEN

CP (J) =CP0+CPI*T (J)+CP2*T (J) **2+CP3*T (J)**3
SAH=AH (i) +. 5* (CP (J)+CP (i)) * (T (J) -T (i))

ENDIF

AH (J) :SAH+. 5*U (J) *U (J)

-- SET OTHER MSC. PARAMETERS AND VALUES

AKAPI=I. E10

PRINT*, 'INPUT CHOICE FOR AKAPI'

READ*, AKAPI
KIN=I

KEX=2

ASN=I. E -20
REP=REPI

RME=-. 05*PEI

TUINF=SQRT (AK (MI)/i. 5)/U (MI)
DPKDTM=0.

IF (ITM.EQ.0) DPKDTM=I.E20
TCI--I.

FSCON=0.

ITBFLG=0

DX--Y (M1)/20.

STAN=0.

YCVP (i)=0.
YCVM (MI)=0.
NDPTS=0

NP2=I

RETURN
CWWWW*WWWW*W****WWW**W****WWW*W***W****W***W*W*WW***************

C 3.00 -- ENTRY POINT TO SUBROUTINE 'DENSE'.

ENTRY DENSE
C

3.10 -- CALCULATE TEMPERATURE FROM THE ENTHALPYC

C

IF(LCPSOL) THEN

T(1)=TW
DO 280 J=2,MI
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280 T(J)=(AH(J)-.5*U(J)**2)/CP(J)
RETURN

ENDIF

T (I)=TW

CP (I)=CP0+CPI*TW+CP2*TW*TW+CP3*TW**3

DO 285 J=2,MI

T (J)=T (I) +2. * (AH (J) -.5*U (J) **2-AH (I) )/ (CP (I) +CP (J-I) )
CP (J)=CP0+CPI*T (J) +CP2*T (J) **2+CP3*T (J) **3

285 T (J)--T(I)+2 .* (AH (J) -.5*U (J) **2-AH (I)) / (CP (I)+CP (J))
C

C 3.20 -- CALCULATE DENSITY FROM IDEAL GAS LAW, THERMAL CONDUCTI

C VITY FROM A POLYNOMIAL APPROXIMATION, VISCOSITY FROM

THE SUTHERLAND VISCOSITY LAW, AND PRANDTL NUMBER.C
C

DO 290 J=I,MI

TK--T (J) +273.15

RHO (J)=PRDR/TK

TCOND=B0+BI*T (J)+B2*T (J) *T (J) +B3*T (J) *T (J) *T (J)

AMU (J)=SCONB*TK**I. 5 / (SCONS+TK)
PR (J) --AM[](J) *CP (J)/TCOND

290 CONTINUE

RETURN

****************************************************************

C 4.00 -- ENTRY POINT FOR SUBROUTINE 'OUTPUT'. BEGIN BY CHECKING

C IF TIME TO STOP COMPUTATION (IE. IS X > XFINAL).
****************************************************************

ENTRY OUTPUT

IF (XU.GT.XUF) LSTOP=.T.
C

C 4.10 --CALCULATE THE MOMENTUM THICKNESS AND MOMENTUM THICKNESS

C REYNOLDS NUMBER. STOP IF RE2 IS GREATER THAN RE2-FINAL.

300

C
DL2=0.

DO 300 J=2,M2

uJ=u (J)/u (MI)
DL2=DL2 + RHO (J) *UJ* (l.-UJ) *YCVR(J)

DL2=DL2/RHO (MI)

RE2=RHO (MI) *U (MI) *DL2/AMU (M.I)

IF (RE2.GT.RE2F) LSTOPI.T.
C

C 4.20 -- CHECK IF TIME FOR OUTPUT OF ANY KIND.

C

IF(RE2.GT.RE2P(NP2) ) GO TO 310
IF(REX.GT.REP) GO TO 310

IF(MOD(ISTEP, JUMPI) .EQ.0) GO TO 310

IF(MOD(ISTEP, JUMP2) .EQ.0) GO TO 310

IF (.NOT. LSTOP) RETURN
310 CONTINUE

C

IF NOT, RETURN

C 4.30 -- CALCULATE COEFICIENTS OF FRICTION AND HEAT TRANSFER

C NOTE THAT ALL PROPERTIES USED IN THE NONDIMENSIONAL-

C IZATION ARE EVALUATED AT THE FREE-STREAM CONDITIONS.

C

CF=-AJTI (I) *2. / (RHO (MI) *U (MI) **2)

CPAVG =. 5* (CP (I) +CP (MI))
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DELTAT= (AH (i) -AH (MI))/CPAVG

IF (XU.GT.UHSL) STAN=AJTI (4) / (RHO(MI) *U(MI)

1 *CPAVG*DELTAT+ASN)
AHTC=AJTI (4) / (DELTAT+ASN)

C

C

C 4.40 -- CALCULATE THE DISPLACEMENT THICKNESS AND THE 99% BOUND

C ARY LAYER THICKNESS. ALSO COMPUTE Y+ AND U+ USING FREE-

C STREAM FLUID PROPERTIES TO NONDIMENSIONALIZE.
C

C

C

C

C

D99=0.

DLI=0.

UFRIC=SQRT (-AJTI (i)/RHO (MI))

YPLSCAL=SQRT (-RHO (MI) *AJTI (I) )/AMU (MI)
DO 320 J=2,M2

UJ=U (J)/U (MI)

UJD=UJ*RHO (J)/RHO (MI)

IF(U(J+I)/U(MI).GT..99.AND.UJ.LT..99) D99=

(. 99-UJ) / (U (J+l)/U (MI) -UJ) * (Y (J+l) -Y (J)) +Y (J)

YPLS (J) =Y (J) *YPLSCAL

UPLS (J) =U (J) / (UFRIC+ASN)

DLI=DLI+ (1.-UJD) *YCVR (J)320

C

C 4.60

C

C

C

4.50 -- IF AT DESIRED MOMENTUM THICKNESS REYNOLDS NUMBER,

WRITE OUT COMPLETE PROFILE INFORMATION TO A FILE.

IF (RE2. GT. RE2P (NP2)) THEN

WRITE (4,305) MI,XU, REX, RE2,D99,DLI,DL2

WRITE(4,306) (Y(J), (F(J,I),I=I,II), J=I,MI)
NP2=NP2+I

ENDIF

IF AT DESIRED REX, WRITE OUT COMPUTED BOUNDARY LAYER

PROPERTIES AND PARAMETERS.

TUINF=SQRT (AK (MI)/I. 5)/U (MI)

DLS=AK (MI) *U (MI) *U (MI) *RHO (MI) / (AMU (MI) *E (MI) )

IF (REX. GT. REP) THEN

REP=I0. ** (ALOG (REP)/ALOG (i0.) +I./REPFC)

NDPTS=NDPTS+I

WRITE (3,303) NDPTS, XU, REX, D99, DLI, DL2, RE2, CF, STAN, AHTC,

1 U (MI) ,DUDS, PRESS, DLS, TUINF

ENDIF

C

C 4.70

C

-- AT INTERVALS OF 'JUMP1', WRITEOUT DESIRED QUANTITIES

BY CALLING SUBROUTINE 'PROFIL'

IF (LSTOP.OR.MOD (ISTEP, JUMP1) .EQ. 0) THEN

E (i) =E (2)

IF (ISTEP.GT.IPP) CALL PROFIL

WRITE (6,301)

ENDIF

4.80 -- AT INTERVALS OF 'JUMP2', WRITEOUT SPECIFIED PARAMETERS
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C TO MONITOR THE COMPUTATIONS.

C

IF (LSTOP .OR. MOD (ISTEP, JUMP2) .EQ. 0 ) THEN

WRITE (6,302) XU, RE2, CF, STAN, AHTC, TUINF, DLS, U (MI)
ENDIF

C

C 4.90 -- IF AT END OF COMPUTATION, CLOSE FILES AND DUMP OUTPUT

C FOR FUTURE RESTART. IF NOT DONE, RETURN.

C

IF (.NOT.LSTOP) RETURN

CLOSE (UNIT=3)

CLOSE (UNIT=4)
RETURN

C
C 4.99 -- FORMATS USED IN SUBROUTINE OUTPUT

301 FORMAT(4X,'XU',7X,'RE2',7X,' CF',7X,'STN',7X,

1 'HTC ',6X, 'TUINF ',5X, 'DLS ',7X, 'UMI ')

302 FORMAT (IP3EI0.3, IPIEg. 2,IP4EI0.3)
303 FORMAT(' ',I3,1PI2EI0.3,1P2E9.2)

304 FORMAT (' REX=',IPIEI0.3,/,' REI=',IPIEI0.3,/,
1 ' RE2=', IPIEI0.3)

305 FORMAT (I4, IP6EI0.3)

306 FORMAT (IPI2EI0.3)
****************************************************************

C 5.00 -- ENTRY POINT FOR SUBROUTINE 'BOUND'
****************************************************************

ENTRY BOUND

C
C 5.10 -- CALCULATE ENTRAINMENT. THIS CAN BE BASED ON EITHER

C THE VELOCITY OR THE ENTHALPY PROFILES.

C

IF (KENT.EQ. 4) THEN
CALL ENTRAIN (RME,AH (i),AH(M2-1) ,AH (MI) ,FRAC, ENEXP)

ELSEIF (KENT.EQ. i) THEN
CALL ENTRAIN(RME, 0.,U(M2-1) ,U(MI) ,FRAC,ENEXP)

ELSE

RMEH=RME

RMEM=RME
CALL ENTRAIN (RMEH,AH (I) ,AH (M2-1) ,AH (i) ,FRAC, ENEXP)
CALL ENTRAIN(RMEM, 0.,U (M2-1) ,U(MI) ,FRAC,ENEXP)

RME=-AMAXI (-RMEH, -RMEM)

ENDIF

RME=AMINI (RME, - •05*PEI)

C
C 5.20 -- AT SPECIFIED MOMENTUM THICKNESS, IMPLEMENT TRANSITION

C MODEL AND COMPUTE DPKDTM AND TCI.

C

IF (RE2.GT.RE2C) THEN
FSCON=I.
PRINT*, 'CRITICAL MOMENTUM THICKNESS RE2 REACHED AT '

pRINT*, 'REX=' ,REX

pRINT*, 'RE2=' ,RE2 i

pRINT*, ' TU=', TUINF
DLS=AK (MI) *U (MI) *U (MI) *RHO (MI) / (AMU (MI) *E (MI) )

PRINT*, 'DLS = ',DLS
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C

C

C

C

C

C

C
C

C

C

C

C

C

C
C

C

C

390

IF(ITM.EQ.0) GO TO 390

TUINF=SQRT (AK (MI) / I. 5) / U (MI)

CALL TRANS (TUINF, DPKDTM0, TCI0)

PRINT*, 'SUB TRANS GIVES '

PRINT*, 'DPKDTM= ', DPKDTM0

PRINT*, 'TCI=' ,TCI0
ITBFLG=I

RE2C=I .E20

ENDIF

IF (ITBFLG.EQ.I) THEN

IF (MOD (ISTEP, JUMPT). EQ. 0) THEN

TUINF=SQRT (AK (MI)/I. 5)/U (M_l)

CALL TRANS (TUINF, DPKDTM0, TCI0)

ENDIF

DPKDTM=DPKDTM0* (RHO (MI)*U (MI)/AMU (Nil)) **2

TCI=TCI0*RHO (MI) *U (M1) *U (MI)/AMU (MI)

ENDIF

*RHO (MI) *U (MI) **4

5.30 -- COMPUTE THE NEXT STEP SIZE, FREE STREAM VELOCITY,

REYNOLDS NUMBER BASED ON X, AND THE MEAN VELOCITY

AND PRESSURE GRADIENTS OVER THE NEXT STEP.

DX=DL2*DXFC

UMIO=U (MI)

XUNEW=XU+DX

U (MI) =UMI (XUNEW)

UINF=. 5* (U (M_l)+UMIO)

DUDS= (U (MI) -UMIO)/DX

DUDSP=RHO (MI) *DUDS

DPDSC=RHO (MI) *UMIO*DUDS

PRESS=PRESS-DPDSC*DX

PRDR=PRESS/RCON

REX=REX+RHO (MI) *UINF*DX/AMU (MI)

5.40 -- CALC THE TURBULENT REYNOLDS NUMBERS AND OTHER RELATED

PARAMETERS, SUCH AS THE SOURCE TERMS IN THE K AND E EQS.

CALL RCURV (XU, RC, KCRC, RFILE)

RCI=I./RC

TRE (2)=AK (2) *AK (2) *RHO (2) / (AMU (2) *E (2))

DO 400 J=2,M2

TRE (J+l) =AK (J+l) *AK (J+l) *RHO (J+l) / (AMU (J+l) *E (J+l))

YRE (J) =SQRT (AK (J)) *Y (J) *RHO (J)/AMU (J)

DYP=Y (J+l) -Y (J)

DYM=Y (J) -X (J-I)

R2= (DYP/DYM) **2

DENI=DYP+R2*DYM

DUI (J) = (U (J+l) - (I-R2) *U (J) -R2*U (J-l))/DEN1
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C

C--

C--

C

C

C

C

C

C

IF(J.EQ.M2) DUI (J)=DUI (J-l)/2.

AMUT (J) =AMU (J) *CU*FMU (TRE (J), YRE (J)) *TRE (J)

SKI=AMUT (J) *DUI (J) *DUI (J)

SKC=FSCON*SKI

DPK= (DPKDTM+TCI*SCK (J)) *DX/U (J)

SCK (J) =SCK (J) +AMINI (DPK, SKC-SCK (J))

SPK (J) =RHO (J) *E (J)

C1 MODIFICATION WAS INSERTED HERE AS PER EQ. (5.5) IN THESIS.

SUPPRESSED BECAUSE AKAPI=I.EI0 INSTEAD OF 2.7 (SEE LINE 178)

SCEMF=AMAXl (I., AK (J) **i. 5/(E (J) *AKAPI*Y (J)) )

SCE (J) =SKI*SCEMF*CI*FI (FMU (TRE (J), YRE (J)) )

1 *E (J) / (AK (J) +ASN)

SPE (J) =C2"F2 (TRE (J)) *RHO (J) *E (J) *E (J) / (AK (J) +ASN)

400 CONTINUE

YRE (MI) =SQRT (AK (M1) )*Y (MI) *RHO (J)/AMU (J)

AMUT (MI) =AMU (J) *CU*FMU (TRE (MI), YRE (MI) )*TRE (MI)

5.50 -- CALCULATE THE BOUNDARY VALUES FOR K AND E

YKE (i)=AK (Ml)
YKE (2)=E (MI)
M=0
XEB=XU

6 CALL RUNGA(2,YKE,FKE,XUB, DX,M,K)

GO TO (10,20),K

io FKE (I)=-YKE (2)/UINF
FKE (2) =-C2*YKE (2) *YKE (2)/YKE (I)/UINF

GOTO 6

20 AK(MI) =YKE (i)

E (MI) =YKE (2)

C

C 5.60 CALCULATE THE BOUNDARY VALUES FOR THE

C

TOTAL ENTHALPY

IF (XU.LT.UHSL) RETURN

KBCI (4) =IWTBC

IF(KBCI (4) .EQ.I) THEN

TW=WTOHF

AH (i) --CP (i) *TW

ELSE

AFXI (4 )=WTOHF

ENDIF

RETURN

****************************************************************

C 6.00 ENTRY POINT FOR SUBROUTINE 'GAMSOR'.

ENTRY GAMSOR

C

C

C 6. i0 I'- CALCULATE THE MOM. EQUATION _ AND SOURCE TERMS

C J i_ i

F (NF.EQ. I) THEN
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520

IF (DPDSC.LT. 0. ) THEN
SPU=DUDSP

SCU=0.
ELSE

SPU=0.

SCU=DPDSC

ENDIF

DO 520 J=2,M2
GAM (J) =AMU (J) +AMUT (J)

AP (J) =SPU

CON (J)=SCU
GAM (I)=AMU (1)
GAM (MI) =AMU (MI) +AMUT (MI)
ENDIF

6.20 -- CALCULATE KINETIC ENERGY EQ. _ AND SOURCE TERMS

5O0

IF (NF. EQ. 2) THEN

DO 500 J=2,M2
CON (J) =SCK (J) *FSCON

AP (J) =-SPK (J) / (AK (J)+ASN)
GAM (J) =AMU (J) +AMUT (J)/SK

GAM (I)=AMU (I)
GAM (MI) =AMU (MI) +AMUT (MI)/SK
ENDIF

6.30 -- CALCULATE THE E EQUATION _ AND SOURCE TERMS

510

IF (NF.EQ. 3) THEN

DO 510 J=2,M2
CON (J) =SCE (J)

AP (J)=-SPE (J) / (E (J)+ASN)

GAM (J)=AMU (J) +AMUT (J)/SE

GAM (i)=0.
GAM (MI) =AMU (MI) +AMUT (MI)/SE
ENDIF

6.40 --CALCULATE TOTAL ENTHALPY EQUATION _ AND SOURCE TERMS

IF (NF. EQ. 4) THEN

DO 515 J=2,MI

GAM (J) =AMU (J)/PR (J) +AMUT (J)/PRT
515 SI (J) = (AMU (J) +AMUT (J) -GAM (J)) *U (J)*DUI (J)

SI (i)=0.

GAM (I) =AMU (i)/PR (I)

DO 516 J=2,M2

DYP=Y (J+l) -X (J)

DYM=Y (J) -Y (J-l)

R2= (DYP/DYM) **2
DENI=DYP+R2*DYM

SC= (SI (J+l) - (I-R2) *SI (J) -R2*SI (J-l))/DEN1

516 CON (J) =CON (J)+SC

ENDIF

RETURN
END
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1

2
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7
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i0
ii

12

13

14

15
16

17

SUBROUTINE VELPROF (DELTA, OMEGA, UINF, MI, U, Y)

DIMENSION U(99) ,Y(99)

C

C THIS SUBROUTINE GENERATES A VELOCITY PROFILE USING A

C POHLHOUSEN POLYNOMIAL TO FIT THE GIVEN GRID VALUES OF Y (J)

C

YOLD=0.

DO 10 J=2,MI

IF(J.LT.MI) YNEW=.5* (Y(J)+Y(J+I))

IF (J. EQ.MI) YNEW=-Y (MI)

YY=. 5* (YNEW+YOLD)/DELTA

U (J) =UINF*YY* (2. -2. *YY**2+YY**3 + OMEGA/6. * (i. -YY) **3)

IF (YY.GT. i) U (J) =UINF

YOLD=YNEW

I0 CONTINUE

RETURN

END

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

41

42

43

44

45

C

C

C

C

SUBROUTINE RUNGA (N, Y, F, X, H, M, K)

THIS ROUTINE PERFORMS A RUNGE-KUTTA INTEGRATION PROCEDURE

BY GILLS METHOD

DIMENSION Y (2) ,F (2) ,Q (2)

M=M+I

GO TO (1,4,5,3,7),M

1 DO 2 I--I,N

2 Q (I)--0.

A=.5

GOTO 9

3 A=I. 70710678118655

4 X=X+. 5*H

5 DO 6 I=I,N

Y (I) =Y (I) +A* (F (I) *H-Q (I))

6 Q (I) =2.*A*H*F (I) + (I.-3.*A) *Q (I)

A=. 292832188134525

GOTO 9

7 DO 8 I=I,N

8 Y (I)=Y (I) +H*F (I) /6.-Q(I) /3.

M=0
K=2

GO TO I0

9 K=I

i0 RETURN

END
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47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68
69

7O

C

SUBROUTINE TRANS (TU, DPK, TCI)

DATA AI,A2,A3/-5.4549,389.2806,-7556.0334/

DATA A4,A5,BI,B2/7.278E4,-2.85036E5,1.8625,14.6786/

DATA CI,C2,C3, DI/6.8475,-367.,9200.,-6.4711/

DATA D2,D3,D4,D5/II77.586,-45930.,615200.,-2767000./

IF(TU.LT..07) THEN

Y=AI+A2*TU+A3*TU*TU+A4*TU**3+A5*TU**4

ELSE

Y=BI+B2*TU

ENDIF

DPK=EXP(Y)*I.E-12

IF (TU.LT..02) THEN

Y=CI+C2*TU+C3*TU*TU

ELSEIF (TU.GT.. 081) THEN
Y=-4. 6011

ELSE

Y=DI+D2*TU+D3*TU*TU+D 4*TU** 3+D 5*TU** 4

ENDIF

TCI=Y*I. E-6

RETURN

END

98
99

i00

I01

102

103

104

105
106

107

108

109

110

iii

112

113

114

115

116

117

118

119

120

121

122

SUBROUTINE RCURV(XU,RC,KCRC, RFILE)

C

C THIS SUBROUTINE RETURNS THE LOCAL RADIUS OF CURVATURE UNLESS

C KCRC IS EQUAL TO I (INDICATING A SPECIFIED CONSTANT RADIUS OF

C CURVATUBE) IT MUST READ IN DATA STORED IN A FILE WHICH LISTS

C RADIUS OF CURVATURE VRS. ARC LENGTH COORDINATE X. IT THEN

C INTERPOLATES TO RETURN THE DESIRED VALUE.

C

C

DIMENSION X(50),R(50)

CHARACTER RFILE*40

LOGICAL LWARN

DATA KREAD, KRCB/I,2/

I0

IF(KCRC.EQ.I) RETURN

IF(KREAD.EQ.I) THEN

OPEN(UNIT=2,FILE=RFILE)

READ(2,*) ND
DO I0 I=I,ND

READ(2,*) X(I),R(I)
CLOSE(UNIT=2)

KREAD=0

LWARN=.TRUE.

ENDIF

DO 20 I=KRCB,ND
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123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

20

IF(XU.LT.X(I)) THEN

ETA= (XU-X (I-l)) / (X (I) -X (I-l))

RC=R (I-l) +ETA* (R(I) -R(I-I) )

KRCB=I

RETURN

ENDIF

CONTINUE

IF (LWARN) THEN

PRINT*, 'WARNING! RADIUS OF

PRINT*, 'GIVEN XU. SETTING

PRINT*, 'XU=' ,XU

LWARN=. FALSE.

ENDIF

RC=I. E20

RETURN

END

CURVATURE NOT FOUND FOR'

RC=I .E20'

140

141

142

143

144

145

146

147

148

149

SUBROUTINE ENTRAIN (RME, F1, FM3, FMI, FRAC, POWER)

IF (FMI.EQ.FI) RETURN

ADIF=ABS ((FMI-FM3) / (FMI-FI))

FE= ( (ADIF+I. E-30)/FRAC) **POWER

FE=AMINI (FE, I. 5)

FE=AMAXI (FE, .25)

RME=FE*RME

RETURN

END

1

2

3

4

5

6

7

FUNCTION FMU (X, Y)

A--(I .-EXP (-. 0163*y-l.E-10) ) **2

FMULB=A* (i. +20. / (X+I .E-10) )

FM=. 5+. 0025"X •

FMU=AMINI (i. 0, FM, FMULB)

RETURN

END

9

I0

ii

12

FUNCTION F2 (X)

F2=I. -EXP (-X'X-1. E-10)

RETURN

END

14

15

16

17

FUNCTION F1 (X)

FI=I.+ (.055/(X+I.E-10))**3

RETURN

END
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The UM1 functions used

Because the function UM1 (which returns the local free-stream velocity)

is problem dependent, a number of different repre-sentations had to be

written. These are listed here.

1
2

3

4

5
6

7

8

FUNCTION UMI (X)
C

C - FREE-STREAM VELOCITY DISTRIBUTION FOR WANG' S ZERO PRESSURE

C GRADIENT WIND TUNNEL TESTS ( K=0.0, UNITS IN M/S)
C

UMI=I 3.50

RETURN
END

1

2

3
4

5

6
7

8

FUNCTION UMI (X)
C

C -FREE-STREAM VELOCITY DISTRIBUTION FOR RUED,WITTIG'S DATA RN-2

C (UINF=CONSTANT=47 M/S)
C

UMI=47.
RETURN

END

1

2

3

4

5

6
7

8

9

FUNCTION UMI (X)
C

C - FREE-STREAM VELOCITY DISTRIBUTION FOR BLAIR'S ZERO PRESSURE

C GRADIENT WIND TUNNEL TESTS (NO WEDGE, K=0.0, UNITS IN M/S)
C

IF (X.GT.-100.) UMI=30.48
UMI=30.48

RETURN
END

1

2

3
4

5

6

7

8

9
I0

FUNCTION UMI (X)
C
C - FREE-STREAM VELOCITY DISTRIBUTION FOR BLAIR' S LOWER

C ACCELERATION TESTS (WEDGE I, K=.20E-6)
C

C
DATA AI,A2,A3/89.914435,5.08,1.066/

UMI=AI / (A2-X) **A3
RETURN
END
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i0

C

C -

C
C

C

FUNCTION UMI (X)

FREE-STREAM VELOCITY DISTRIBUTION FOR BLAIR'S HIGHER

ACCELERATION TESTS (WEDGE 2, K=.75E-6)

DATA AI,A2,A3/22. 2178, 2. 11582, i. 075/

UMI--AI/(A2-X) **A3
RETURN
END

1

2
3
4

5

6
7

8

9
I0

Ii

12
13

14

15

16
17

18

19

C
C

C

C

FUNCTION UMI (X)

-FREE-STREAM VELOCITY DISTRIBUTION FOR RUED'S DATA NR-6

DATA Xl,X2/.20,.35/

DATA AI,A2,A3,A4,A5/48.4,.50,-50.,25.,343.4/
DATA BI,B2/5200.,3.5/

DATA CI,C2,C3,C4/I06.0136,423.9787,1665.05,-23333./

IF (X.LE.X2) THEN

UMI=AI+A2*EXP (A3*X) +A4*X+AS*X*X

IF (X.GT.Xl) UMI=UMI+BI* (X-Xl)**B2
RETURN

ELSE

Y=X-X2

UMI=CI+C2*Y+C3*Y*Y+C4*Y*Y*Y
ENDIF

RETURN

END

1

2

3

4

5

6
7

8

9

I0

ii

12
13

14

C

C

C

C

FUNCTION UMI(X)

-FREE-STREAMVELOCITY DISTRIBUTION FOR RUED'S DATA NR-10

DATA Xl,X2/.179,.30/

DATA AI,A2,A3,A4,A5/47.5,10.81,1483.37,-5563.333,31826.75/

DATA A6,A7/387450.,-1742667/
DATA BI,B2,B3,B4/III.606856, 804.61431, -60173.417,

1 248650.49/

DATA CI,C2/155.66475,-76.384701/

IF(X.LE.XI) THEN
UMI=AI+A2*X+A3*X*X+A4*X*X*X+A5*X**4+A6*X**5+A7*X**6

RETURN

ELSEIF(X.GT.X2) THEN
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15

16

17

18

19

20

21

22

23

Y=X-X2

UMI=CI+C2*Y

RETURN

ELSE

Y=X-XI

UMI=BI+B2*Y+B3*Y*Y*Y+B4*Y*Y*Y*Y

ENDIF

RETURN

END

1

2

3

4

5

6

7

8

9

I0

ll

12

13

14

15

16

17

18

19

20

FUNCTION UMI (X)

C

C -FREE-STREAM VELOCITY DISTRIBUTION FOR RUED' S DATA NR-12

C

DATA Xl/.20/

DATA AI,A2,A3,A4/26.5, 2319., -28680, 347100./

DATA A5,A6/-647300., -2100000./

DATA BI,B2,B3,B4/71.4128, 385.72, -1654.85, -149700./

DATA B5, B6,B7/2.095E6, -I.026E7, 1.731E7/

IF(X.LE.Xl) THEN

UMI=AI + A2/2.*X*X + A3/3.*X*X*X + A4/4.*X**4

1 + A5/5*X**5 + A6/6.*X**6

ELSE

Y=X-XI

UMI=BI + B2*Y + B3/2.*Y*Y + B4/3.*Y*Y*Y

1 + B5/4.*Y**4 + B6/5.*Y**5 + B7/6.*Y**6

ENDIF

RETURN

END

1

2

3

4

5

6

7

8

9

i0

Ii

12

13

14

FUNCTION UMI(XU)

C

C -FREE-STREAMVELOCITY DISTRIBUTION FOR THE DANIALS AND BROWN

C -BLADE (RED CONDITIONS) FOR THE PRESSURE SIDE OF THE BLADE

C DIMENSIONS ARE IN METERS, AND METERS/SEC RESPECTIVELY.

C

DATA S,UI/.05044,146./

DATA AI,A2,A3,A4/.9561,6.2799,-12.0039,7.7947/

x=xu/s
U=AI*X + A2*X**2 + A3*X**3 + A4*X**4

UMI=U*UI

RETURN

END
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FUNCTION UMI (XU)
C

C -FREE-STREAM VELOCITY DISTRIBUTION FOR THE DANIALS AND BROWN

C -DATA DESIGNATED AS RED CONDITIONS FOR THE SUCTION SIDE OF THE

C BLADE. DIMENSIONS ARE IN METERS, AND METERS/SEC RESPECTIVELY.
C

C

C

C

DIMENSION X (55) ,V (55)
DATA JREAD, JX/0, 2/

IF (JREAD. EQ. 0) THEN

OPEN (UNIT=I, FILE= 'DBRDSVD ')
OPEN (UNIT_I, FILE-, 'RWVEL/DBRDSVD ')
READ (I,*) ND

DO 5 JII,ND

READ(l,*) X (J) ,V(J)
CLOSE (UNIT=I)
JREAD-,I

ENDIF

DO I0 J=JX, ND

IF (XU.LT.X(J)) THEN

Fm (XU-X (J-l))/(X (J)-X(J-I))
UMI=V (J-l) +F* (V(J) -V (J-1) )
JXmJ

RETURN
ENDIF

i0 CONTINUE

UMI-V (ND)
RETURN
END

Data file "DBRDsvd". (See line 12 above)

1 54

2 0.00000E+00 0.00000E+00

3 4.42430E-04 6.57394E+01
4 9.05600E-04 1.23798E+02

5 1.48717E-03 1.77565E+02

6 2.09038E-03 2.17336E+02

7 2.75392E-03 2.47149E+02

8 3.73226E-03 2.72699E+02
9 4.39781E-03 2.88058E+02

10 5.57312E-03 3.09082E+02
11 6.63185E-03 3.21288E+02

12 8.14303E-03 3.31245E+02

13 9.43884E-03 3.33303E+02

14 1.04406E-02 3.33084E+02
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15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

1 15795E-02

1 26599E-02

1 36814E-02

1 48601E-02

1 60974E-02

1 71768E-02

1 83153E-02

1 94340E-02

2 08075E-02

2 19853E-02

2 32216E-02

2.47913E-02

2.64205E-02

2.79513E-02

2.96396E-02

3.13475E-02

3. 29575E-02

3. 41358E-02

3. 51567E-02

3.63355E-02

3.74749E-02

3.88312E-02

4.04423E-02

4 20927E-02

4 34087E-02

4 46258E-02

4 61576E-02

4 71387E-02

4 85914E-02

4 98670E-02

5 12622E-02

5.26140E-02

5.40666E-02

5.56202E-02

5.72091E-02

5.84650E-02

5.95041E-02

6.07449E-02

6.19252E-02

6.34182E-02

6.41446E-02

3 32194E+02

3 30398E+02

3 28150E+02

3 26368E+02

3 26383E+02

3 29621E+02

3 33911E+02

3 39551E+02

3 47517E+02

3 54113E+02

3 60789E+02

3 68480E+02

3 75975E+02

3 82251E+02

3 88666E+02

3 93619E+02

3 97161E+02

3 98081E+02

3 97862E+02

3 95614E+02

3 91570E+02

3.86144E+02

3.79861E+02

3.76890E+02

3.75782E+02

3.76587E+02

3.79574E+02

3.82714E+02

3.88524E+02

3.93818E+02

3.99838E+02

4.05921E+02

4.12312E+02

4.18527E+02

4.24088E+02

4.26411E+02

4.26931E+02

4.22092E+02

4.13288E+02

3.97505E+02

3.90964E+02
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A Listing of program MAIN

A listing of the main driver program "MAIN", together with it's associated
subroutines is given here.

1

2

3
4

5
6

7

8
9

i0

ii

12

13

14

15
16

17

18
19

20

21

22

23

24

25

26

27

28
29

3O
31

32

33

34

35
36

37

38
39

4O
41

42

43

44

45
46

47

C
PROGRAM MAIN (OUTPUT, TAPE6=OUTPUT)

LOGICAL LSTOP

C_N/CNTL/LSTOP

CALL USER

CALL SETUP

CALL START

10 CALL DENSE

CALL SETUP2

CALL OUTPUT

IF (LSTOP) STOP

CALL BOUND

CALL SETUP3

GO TO I0

END

***************************************************************

SUBROUTINE DIFLOW

C

COMMON/COEF/FLOW, DIFF, ACOF

ACOF=DIFF+I. E-30

IF (FLOW.EQ. 0. ) RETURN

TEMP=DIFF-ABS (FLOW) *0.1

ACOF=I. E - 30

IF (TEMP.LE. 0. ) RETURN

TEMP=TEMP/DIFF

ACOF=DIFF*TEMP** 5

RETURN

END

***************************************************************

SUBROUTINE SETUP

C

LOGICAL LSTOP, LPR, LGPG, LTIME, LSOLVE, LPRINT

character title (13) *7

COMMON F (99, ii) ,RHO (99), GAM (99), CON(99),

1
2
3

4

C_N

1

2

C_N

1
2

common

CO_VDN

CO5_4ON

AP (99) ,AN(99) ,AS (99) ,PT (99) ,QT (99) ,RT (99),

OM (99) ,OMF (99) ,OMFI (99), OMCV (99), Y (99),

YF (99), YCVR (99),YCVP (99), YCVM (99), R(99),

RF (99), FLO (99)

/INDX / NF, NFMAX, NU, NRHO, NGAM, M1, M2, KIN, KEX, DPDX,

I STEP, LASTEP, MODE, ITMX, LGPG, LTIME, XU, DX, XLAST,

PEI, PSII, PSIE, PSIT, YMI, POWER, CSALFA, RMI, RME, ARI, ARE

/VARB/ LSOLVE (ii), LPRINT (13),

AJTI (II) ,AJTE (Ii) ,AFXI (ii), BFXI (ii),

AFXE (Ii) ,BFXE (Ii) ,KBCI (II) ,KBCE (ii)

/char/ title

/CNTL/ LSTOP

/COEF/ FLOW, DIFF, ACOF
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48
49

50

51

52

53
54

55
56

57

58

59
60

61

62
63

64
65

66
67

68
69

70

71
72

73

74

75
76

77

78
79

80

81

82
83

84

85

86

87

88

89

90
91

92

93

94

95
96

97

98
99

100
i01

102

DIMENSION U (99)

EQUIVALENCE (F (I, i), U (i))
*****************************************************************

DATA NFMAX, NU, NRHO, NGAM, nsolv/ll, I, ii, Ii, 4/

DATA LSTOP, LGPG, LTIME, LSOLVE, LPRINT/. F. , .T., 25*. F. /
DATA ISTEP, LASTEP, XU, XLAST/0, i000, 0. ,1.El0/

DATA CSALFA, PSI I,MODE, ITMX, POWER, RMI, RME/I. ,0., i, 10, I., 0., 0./

DATA AFXI, BFXI, AFXE, BFXE, KBCI, KBCE/44*0., 22"1/
DATA AJTI,AJTE/22*0. /

C,, ...,,,,,,.,,,,,,,,,,.,,,,..,,.,,,,,.,,..,,.,,,..,,.,,,.,..,,, .,.

C

M2=MI-I

OMF (2)=0.

OMF (M1) =1.
OM(1) =0.

DO 1 J--2,M2
AP (J)=0.

CON (J)=0.
OM(J) =0.5* (OMF (J)+OMF (J+l))
OMCV (J) -<AMF (J+l) _ (J)

10MFI (J)=I. _ (J)
OM (MI)=1.
cIvIFl(MI)=0.
Y(1)=O.

YF (2)=0.
DO 3 J=I,MI

R (J)=1.

3 RF (J)=I.
GAM (I)=0.
GAM (MI)=o.

C

WRITE (6, 9)

IF (MODE. EQ. i) WRITE (6,2)
IF (MODE.NE. i) WRITE (6, 4)

IF (.NOT.LGPG) WRITE (6, 4)

IF (MODE. NE. I) STOP
IF (.NOT.LGPG) STOP

WRITE (6, 9)

2 FORMAT (SX, *PLANE GEOMETRY*)

4 FORMAT (2X, *MAIN PROGRAM NOT SET UP FOR MODE>I OR LGPG=F *)

9 FORMAT (IX)
RETURN

C,,, ,,,,,,,,,,,,,,,,,,,,,,.,,,,,,,.,,,,,.,,,,,,,,,,,,,,,,,,,,,,

ENTRY SETUP2
C

PSIE=PSII+PEI

C

CALCULATION OF Y AND R VALUES

DO 21 J=2,M2

IF(U(J).LT.0.) GO TO 51

YCVR (J)=PEI*OMCV (J) / (RHO (J) *U (J))

YF (J+l) --YF(J) +YCVR (J)
21 Y (J)=YF (J) +0.5*YCVR (J)

Y (MI)=YF (MI)
DO 40 J=2,M2
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103

104

105

106

107

108

109

Ii0

Iii

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

YCVP (J)=YF (J+l) -X (J)

40 YCVM (J) =Y (J) -YF (J)

GO TO 55

51 WRITE (6, 52)

52 FORMAT(5(IH*),*AT LEAST ONE VELOCITY HAS BECOME NEGATIVE*,

1 5 (IH*))

LSTOP=. T.

55 CONTINUE

RETURN

C,,,,,,,,,,,,,,.,, oo,ooo o,.o.,,,o,,.,,,,,,,,o,,,,,,,,,o,.,,o,,,o

ENTRY SETUP3

C

IF (KIN.EQ. 3) RMI=0.

IF (KEX.EQ. 3) RME=0.

ARI=RF (2) *DX

ARE=RF (MI) *DX

DO 60 J=2,MI

60 FLO (J) = (RMI*OMFI (J) +RME*OMF (J)) *DX

C

C

C

DO I00 NFl=l, nsolv

NF=NFI

IF (.NOT. LSOLVE (NF))

LPR=. FALSE.

GO TO I00

CALL GAMSOR

C

COEFFICIENT CALCULATION ..............

DIFF=ARI*GAM (I)/YCVM (2)

IF (KIN.NE. i) DIFF=0.

FLOW=FLO (2 )

CALL DIFLOW

AS (2) =ACOF+AMAXI (0., FLOW)

AN (i) --AS (2) -FLOW

DO 101 J=2,M2

IF (J.EQ.M2) GO TO 102

DIFF--RF (J+l) *DX/(YC"VP (J) / (GAM (J) +i. E-30) +

1 YCVM (J+l) / (GAM (J+l) +i .E-30) )

GO TO 103

102 DIFF=ARE*GAM(MI)/YCVP (M2)

IF (KEX.NE. i) DIFF=0.

103 FLOW=FLO (J+l)

CALL DIFLOW

AS (J+l)=ACOF+AMAXl (0., FLOW)

AN (J) =AS (J+l) -FLOW

FLUP=PE I*OMCV (J)

VOL=YCVR (J) *DX

AP (J) =AS (J) +AN (J) +FLUP-AP (J) *VOL

I01 CON (J) =FLUP*F (J, NF) +CON (J) *VOL

C

COEFFICIENTS MODIFIED FOR THE I BOUNDARY

AP (i) =AS (2)

IF(KIN.NE.I.OR.KBCI(NF).EQ.I) GO TO 105

FACI=I.

IF (KBCI (N-F) .EQ. 3) FACI--I.+BFXI (NF) *ARI/AP (i)

CON (I) =AFXI (NF) *ARI
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158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180
181

182

183

184

185
186

187

188
189

190

191

192

193

194

195

196

197

198

199

20O
201

202

203

204

205
206

207

208
209

210

211

212

AP (2) =AP (2) -AN(l)/FACI

CON (2) --CON (2) +CON (i) / FACI

AS (2) =0.

C

COEFFICIENTS MODIFIED FOR THE E BOUNDARY

105 AP (MI)=AN (M2)
IF(KEX.NE.I.OR.KBCE(NF).EQ.I) GO TO Ii0

FACE=I.

IF (KBCE (NF) .EQ. 3) FACE=I. +BFXE (NF) *ARE/AP (MI)

CON (M_l)=AFXE (NF) *ARE

AP (M2)=AP (M2) -AS (M_l)/FACE

CON (M2) =CON (M2) +CON (M_l)/FACE

AN (M2) =0.

ii0 CONTINUE

C

C

CALCULATION OF THE NEW VALUES OF F(J, NF) BY TDMA

PT (i) =0.

QT (1) =F (I, NF)

DO 120 J=2,M2

DENOM--AP (J) -PT (J-l) *AS (J)

PT (J) =AN (J)/DENOM

QT (J) = (CON (J) +AS (J) *QT (J-l))/DENOM

120 IF (LPR) RT (J) = (RT (J) +AS (J) *RT (J-l))/DENOM

DO 121 JJ=2,M2

J=MI-JJ+l

121 F (J, NF) =F (J+l, NF) *PT (J) +QT (J)

C

CALCUI2%TION THE UNKNOWN BOUNDARY VALUES OR FLUXES

C .......... FOR THE I BOUNDARY

IF(KIN.EQ.2) GO TO 140

IF(KIN.EQ.I) GO TO 131

F (I,NF)=F (2,NF)
GO TO 140

131 IF(KBCI(NF).EQ.I) GO TO 132

F (I,NF) = (AN (i) *F (2, NF)+CON(l) ) / (AP (I) *FACI)

AJTI (NF) =AFXI (NF)

IF (KBCl (NF) .EQ. 3) AJTI (NF) =AJTI (NF) -BFXl (NF) *F (I, NF)

GO TO 140

132 AJTI (NF)= (AP (i) *F (I, NF) -AN(l) *F (2,NF))/ARI

C .............. FOR THE E BOUNDARY

140 IF (KEX.EQ. 2) GO TO 150

IF(KEX.EQ.1) GO TO 141

F (MI, NF) =F (M2, NF)

GO TO 150

141 IF(KBCE(NF).EQ.I) GO TO 142

F (MI, NF) = (AS (MI) *F (M2, NF )+CON (MI) )/ (AP (MI) *FACE )

AJTE (N-F)=AFXE (NF)

IF (KBCE (N-F) .EQ. 3) AJTE (NF) =AJTE (NF) -BFXE (NF) *F (M1, NF)

GO TO 150

AJTE (NF) = (AP (MI) *F (MI, NF) -AS (MI) *F (M2, NF) )/ARE

CONTINUE

142

150

C

CON AND AP ARE RESET TO ZERO

DO 180 J=2,M2
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213
214

215
216

217

218
219

220

221
222

223

224
225

226

227
228

229

230
231

232

233

234
235

236
237

238
239

240

241
242

243

244

245

246

247
248

249

250

251
252

253

254

255
256

257

258
259

260
261

262

263

C

C

AP (J)=0.
180 CON (J)=0.

I00 CONTINUE

ISTEP=ISTEP+l

XU=XU+DX

PEI=PEI+ (RMI-BME) *DX
PSII=PSII-RMI*DX

IF(ISTEP.GE.LASTEP) LSTOP=.TRUE.
IF(XU.GE.XLAST) LSTOP=.TRUE.
RETURN

C,,e_eeeeee.ee,eee,ee,,eeeeee,,e,,,e,,e,,i,eee.e,.,,.,,,.e,eee

ENTRY PROFIL

201 FORMAT (IX)

202 FORMAT (2X, *J*, 4X, 8 (2X, I4, 3X) )

203 FORMAT (2X, *Y*, 4X, IP8E9.2)
204 FORMAT (A6, IX, IPSE9.2)

JEND=0
210 JBEG=JEND+I

JROD=JEND+ 8

JEND=MIN0 (JROD, M1 )
WRITE (6,201)

WRITE (6,202) (J, J=JBEG, JEND)

WRITE (6,203) (Y (J), J=JBEG, JEND)

DO 225 NFI=I,NFMAX
IF(.NOT.LPRINT(NFI)) GO TO 225

WRITE (6,204) TITLE (NFI), (F (J,NFI), J=JBEG, JEND)

225 CONTINUE

IF(JEND.LT.MI) GO TO 210

WRITE (6,201)
RETURN

Ce e e e e e e e e , e, e, e e e e e, e e, • e,,e e, • • • • • • • • • • • • • • • • • • • , • • • • • • • • • •

ENTRY UYGRID

C
M2=MI-I

YF (2) =0.
DO 251 J=3,M2

251 YF (J) =0.5* (Y (J) +Y (J-l))

YF (MI) =Y (MI)

OMF (2) =0.
DO 252 J=2,M2
RDY=YF (J+l) -YF (J)

252 OMF (J+l) =(AMF (J) +RHO (J)*U (J)*RDY

PEI=OMF (MI)

DO 253 J=2,MI

253 OMF (J)=OMF (J)/PEI
RETURN

END
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Sample Input Files

Listing of file "wangin". This is the input data file for calculating Wang's
flat plate experiment.

1

2

3

4

5

6

7

8

9

i0

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

'.... FILNAME(1) - FILNAME(4) .... '

'BLDATIN ', 'BLDATOI ', 'BLDATO2 ', 'BLDATO3 '

'.... LSOLVE (I) - LSOLVE (4) .... '
.T. .T. .T. .T.

'.... LPRINT(1) - LPRINT(II) .... '

.T. .T. .T. .T. .T. .T. .T. .T. .T. .T. .T.

'.... TITLE(l) - TITLE(II) .... '

'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DUI'

'.... RE2P(1) - RE2P(10) .... '

200.0,300.0,400.0,500.0,750.0, i000., 1200., 1500., 2000.,I.E9

'---LASTEP, JUMP1, JUMP2, IPP, JUMPT ---'

5000, 5000, i00, 5001, i0

'---KENT, HTC, ITM, LCPSOL---'
1 1 1 .T.

'--- TU, EIN, XUI, XUF, RE2F, RE2C ---'

•0235, 0.70, .0001, 1.01, 5000., 125.

'--- PRESS, VINF ---'

1.019E+5, 13.50

'--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---'

2, .90, 22., 22., .01000, 850.

'---MI, DEL, DELT, GEXP, GXl, EKI, AI, DXFC, REPI, REPFC ---'

88, 5.39E-4, 5.39E-4, 2.30, .I, 2.0, 1.0, 1.00, 8.0E4, 30.

'---CU, CI, C2, SK, SE, CC, CVRM---'

.09, 1.44, 1.92, I., 1.3, 0.00, 0.

'---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---'

0.0, .0007, 1.00, I.E20, i, i, 'NOFILE'

Listing of file "rw22in". This is the input data file for calculating Rued's
flat plate experiment using grid 2.

1

2

3

4

5

6

7

8

9

I0

'.... FILNAME(1) - FILNAME(4) .... '

'BLDATIN ', 'BLDATOI ', 'BLDATO2 ', 'BLDATO3 '

'.... LSOLVE(1) - LSOLVE (4) .... '

.T. .T. .T. .T.

'.... LPR.INT(1) - LPRINT(II) .... '

.T. .T. .T. .T. .T. .T. .T. .T. .T. .T. .T.

'.... TITLE(l) - TITLE(II) .... '

'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DUI'

'.... RE2P(1) - RE2P(10) .... '

200.0,300.0,400.0,500.0,750.0, I000., 1200., 1500., 2000.,I.E9
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ii

12

13
14

15
16

17
18

19

20

21

22

23
24

25

26

'---LASTEP, JUMP1, JUMP2, IPP, JUMPT --- '

5000, 5000, i00, 5001, 20
'---KENT, HTC, ITM, LCPSOL---'

111.T.
'--- TU, EIN, XUI, XUF, RE2F, RE2C ---'

.0465, 1600., .0005, .30, 5000., 125.

'--- PRESS, VINF ---'

I. 01325E+5, 47.0
'--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---'

i, .90, 105., 105., .0150, 29.2
'---MI, DEL, DELT, GEXP, GXI, EKI, AI, DXFC, REPI, BEPFC ---'

88, 1.00E-4, 1.00E-4, 2.30, .i, 2.0, 1.0, 0.75, 5.0E4, 30.

'---CU, CI, C2, SK, SE, CC, CVPM---'

.09, 1.44, 1.92, i., 1.3, 0.00, 0.
'---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---'

0.0, .0007, 1.00, I.E20, I, i, 'NOFILE'

1
2

3

4

5
6

7

8
9

i0
ii

12
13

14

15
16
17

18
19

20
21

22
23

24

25

26

Listing of file "bl02in". This is the input data file for calculating Blair
and Werle's flat plate experiment using grid 2.

,.... FILNAME(1) - FILNAME(4) .... '

'BLDATIN' ,'BLDATOI ','BLDATO2 ','BLDAT03 '

,.... LSOLVE(1) - LSOLVE(4) .... '

.T. .T. .T. .T.
,.... LPRINT(1) - LPRINT(II) .... '

.T..T..T..T..T..T..T..T..T..T..T.

..... TITLE (I) - TITLE (Ii) .... '
'U' 'K' 'E' 'H' 'T' 'TRE' .YRE' 'AMUT' 'YPLS' 'UPLS' 'DUI'

,.... RE2P(1) - RE2P(10) .... '
200.0,300.0,400.0,500.0,750.0,1000., 1200.,1500., 2000.,1.E9

,---LASTEP, JUMP1, JUMP2, IPP, JUMPT --- '

5000, 5000, 100, 5001, 10
.---KENT, HTC, ITM, LCPSOL---'

111 .T.
.---TU, EIN, XUI, XUF, RE2F, RE2C---'

.0233, 19.5, .0005, 1.50, 5000., 125.

,--- PRESS, VINF ---'

1.019E+5, 30.48
.--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---'

2, .90, 22., 22., .0425, 850.
.---MI, DEL, DELT, GEXP, GX1, EKI, AI, DXFC, REPI, REPFC ---'

88, 0.94E-4, 0.94E-4, 2.30, .i, 2.0, 1.0, 1.00, 8.0E4, 30.

'---CU, CI, C2, SK, SE, CC, CVP_---'

.09, 1.44, 1.92, 1., 1.3, 0.00, 0.
'---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---'

0.0, .0007, 1.00, 1.E20, 1, 1, 'NOFILE'



242

Listing of file "bll2in", This is the input data file for Blair and Werle's

lower acceleration case with Tue, T equal to 2.1%.

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

'.... FILNAME(1) - FILNAME(4) .... '

'BLDATIN' , 'BLDATOI ', 'BLDATO2 ', 'BLDATO3 '

'.... LSOLVE(1) - LSOLVE(4) .... '
.T. .T. .T. :.T.

'.... LPRINT(1) - LPRINT(II) .... '

.T. .T. .T. .T. .T. .T. .T. .T. .T. .T. .T.

'.... TITLE (i) - TITLE (II) .... '

'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DUI'

'.... RE2P(1) - RE2P(10) .... '

200.0,300.0,400.0,500.0,750.0, i000., 1200., 1500., 2000.,I.E9

'---LASTEP, JUMP1, JUMP2, IPP, JIR4PT --- '

5000, 5000, i00, 5001, i0

'--- KENT, HTC, ITM, LCPSOL ---'
1 1 1 .T.

'--- TU, EIN, XUI, XUF, RE2F, RE2C ---'

.0210, 1.20, .0010, 1.50, 5000., 125.

'--- PRESS, VINF ---'

I. 019E+5, 30.48

'--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---'

2, .90, 22., 22., .0430, 850.

'--- MI, DEL, DELT, GEXP, GXl, EKI, AI, DXFC, REPI, REPFC ---'

88, 1.80E-4, 1.80E-4, 2.30, .i, 2.0, 1.0, 1.00, 8.0E4, 30.
'---CU, CI, C2, SK, SE, CC, CVRM---'

.09, 1.44, 1.92, I., 1.3, 0.00, 0.

'---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---'

0.0, •0007, 1.00, I.E20, i, I, 'NOFILE'

1

2

3

4

5

6

7

8

9

i0

II

12

13

14

15

16

17

Listing of file "rw123in". This is the input data file for calculating

Rued's pressure gradient experiment set 12 using grid 3.

'.... FILNAME(1) - FILNAME(4) .... '

'BLDATIN' , 'BLDATOI ', 'BLDATO2 ', 'BLDATO3 '

'.... LSOLVE (i) - LSOLVE (4) .... '

.T. .T. .T. .T.

'.... LPRINT(1) - LPRINT(II) .... '

.T. .T. .T. .T. .T. .T. .T. .T. .T. .T. .T.

'.... TITLE(l) - TITLE(II) .... '

'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DUI'

'.... RE2P(1) - RE2P(10) .... '

200.0,300.0,400.0,500.0,750.0, i000., 1200., 1500., 2000.,I.E9

'---LASTEP, JUMP1, JUMP2, IPP, JUMPT ---'

5000, 5000, i00, 5001, 20

'---KENT, HTC, ITM, LCPSOL ---'

1 1 1 .F.

'---TU, EIN, XUI, XUF, RE2F, RE2C ---'

•0773, 882., .0010, .40, 5000., 125.

'--- PRESS, VINF ---'
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18

19

20

21

22

23

24

25

26

1.01325E+5, 26.50

'--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---'

i, .90, 194., 194., .0150, 26.0

'---MI, DEL, DELT, GEXP, GXI, EKI, AI, DXFC, REPI, REPFC ---'

88, 2.18E-4, 2.18E-4, 2.30, .i, 2.0, 1.0, 0.75, 2.0E4, 30.

'---CU, CI, C2, SK, SE, CC, CVRM---'

.09, 1.44, 1.92, i., 1.3, 0.00, 0.

'---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---'

0.003, .0007, 1.00, I.E20, I, I, 'NOFILE'

Listing of file "dbrdsin". This is the input data file for calculating

Daniel's blade on the suction side. (Re o conditions)

1

2

3

4

5

6

7

8

9

I0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

'.... FILNAME(1) - FILNAME(4) .... '

'BLDATIN ', 'BLDATOI ', 'BLDATO2 ', 'BLDATO3 '

'.... LSOLVE (i) - LSOLVE (4) .... '

.T. .T. .T. .T.

'.... LPRINT(1) - LPRINT(II) .... '

.T. .T. .T. .T. .T. .T. .T. .T. .T. .T. .T.

'.... TITLE(l) - TITLE(II) .... '

'U' 'K' 'E' 'H' 'T' 'TILE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DUI'

'.... RE2P(1) - RE2P(10) .... '

200.0,300.0,400.0,500.0,750.0, i000., 1200., 1500., 2000.,I.E9

'---LASTEP, JI/MPI, JUMP2, IPP, JUMPT --- '

8000, 8000, 200, 9001, 20

'---KENT, HTC, ITM, LCPSOL---'
1 1 1 .F.

'--- TU, EIN, XUI, XUF, RE2F, RE2C ---'

•0860, I0., .0004, .060, 50000., 125.

'--- PRESS, VINF ---'

2.920E5, 146

'--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---'

i, .90, 150., 16., •00001, 16.

'---MI, DEL,DELT, GEXP, GXl, EKI, AI, DXFC, REPI, REPFC ---'

88, 1.89E-5, 3.9E-5, 2.3, .I, 2., 1.0, 1.00, 4.E4, 25.

'---CU, CI, C2, SK, SE, CC, CVBM---'

.09, 1.44, 1.92, I., 1.3, 0.00, 0.0

'---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---'

7.16, .0008, 1.00, I.E20, i, i, 'RCDBS'

Listing of file "dbrdpin". This is the input data file for calculating

Daniel's blade on the pressure side. (Re D conditions)

'.... FILNAME(1) - FILNAME(4) .... '

'BLDATIN' , 'BLDATOI ', 'BLDAT02 ', 'BLDATO3 '

'.... LSOLVE (I) - LSOLVE (4) .... '

.T. .T. .T. .T.

'.... LPRINT(1) - LPRINT(II) .... '

.T. .T. .T. .T. .T. .T. .T. .T. .T. .T. .T.

'.... TITLE (I) - TITLE (II) .... '
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8

9

I0

ii

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DUI'

'.... RE2P(1) - RE2P(10) .... '

200.0,300.0,400.0,500.0,750.0, i000., 1200., 1500., 2000.,I.E9

'---LASTEP, JUMP1, JUMP2, IPP, JUMPT ---'

8000, 8000, 200, 9001, 20

'---KENT, HTC, ITM, LCPSOL ---'

1 1 1 .F.

'--- TU, EIN, XUI, XUF, RE2F, RE2C ---'

.3913, 10., .0030, .048, 50000., 125.

'--- PRESS, VINF ---'

2.920E5, 146

'--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---'

i, .90, 150., 16., .00001, 16.

'---MI, DEL, DELT, GEXP, GXI, EKI, AI, DXFC, REPI, REPFC ---'

88, 1.1lIE-4, 1.1lIE-4, 2.3, .1, 2., 1.0, 1.00, 5.E3, 20.

'---CU, CI, C2, SK, SE, CC, CVRM---'

.09, 1.44, 1.92, i., 1.3, 0.20, 0.0

'---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, REILE ---'

7.65, .0008, 1.00, I.E20, i, i, 'RCDBP'

Listing of file "d145sin". This is the input data file for Hilton et al.'s
C3X blade on the suction side.

1

2

3

4

5

6

7

8

9

I0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

'.... FILNAME(1) - FILNAME(4) .... '

'BLDATIN', 'BLDATOI ', 'BLDAT02 ', 'BLDAT03 '

'.... LSOLVE(1) - LSOLVE(4) .... '

.T. .T. .T. .T.

'.... LPRINT(1) - LPRINT(II) .... '

.T. .T. .T. .T. .T. .T. .T. .T. .T. .T. .T.

'.... TITLE(l) - TITLE(f1) .... '

'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DUI'

'.... RE2P(1) - RE2P(10) .... '

200.0,300.0,400.0,500.0,750.0,1000.,1200.,1500., 2000.,I.E9

'---LASTEP, JUMP1, JUMP2, IPP, JUMPT --- '

8000, 8000, i00, 9001, 10

'---KENT, HTC, ITM, LCPSOL---'

411 .F.

'---TU, EIN, XUI, XUF, RE2F, RE2C---'

.147, 20., .0040, .160, 50000., 125.

'--- PRESS, VINF ---'

4.00E5, 90.

'--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---'

I, .90, 515., 375., .00001, 375.

'---M1, DEL, DELT, GEXP, GXl, EKI, AI, DXFC, REPI, REPFC---'

99, 1.12E-4, 2.20E-4, 2.8, .i, 2., 1.0, 1.03, 4.E4, 25.

'---CU, CI, C2, SK, SE, CC, CVRM, ---'

•09, 1.44, 1.92, I., 1.3, 0.00, 0.00

'---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---'

7.16, .0007, 1.00, I.E20, I, 0, 'RC3XI45S'



245

Listing of file "d145pin". This is the input data file for Hilton et al.'s

C3X blade on the pressure side.

1

2

3

4

5

6
7

8

9

i0
II

12

13

14

15

16
17

18

19

20
21

22

23
24

25

26

'.... FILNAME(1) - FILNAME(4) .... '

'BLDATIN ', 'BLDATO1 ', 'BLDAT02 ','BLDATO3 '

'.... LSOLVE(1) - LSOLVE(4) .... '
.T. .T. .T. .T.

'.... LPRINT(1) - LPRINT(II) .... '
.T. .T. .T. .T. .T. .T. .T. .T. .T. .T. .T.

'.... TITLE(l) - TITLE(II) .... '
'U' 'K' 'E' 'H' 'T' 'TRE' 'YRE' 'AMUT' 'YPLS' 'UPLS' 'DUI'

'.... RE2P (I) - RE2P (i0) .... '

200.0,300.0,400.0,500.0,750.0, 1000., 1200., 1500. ,2000.,I.E9

'---LASTEP, JiR4PI, JUMP2, IPP, JUMPT ---'

8000, 8000, 100, 9001, 10
'---KENT, HTC, ITM, LCPSOL---'
1 1 1 .F.

'---TU, EIN, XUI, XUF, RE2F, RE2C---'

.1846, 10., .004, .i00, 50000., 125.

'--- PRESS, VINF ---'

4.00E5, 90.
'--- IWTBC, PRT, TINF, TW, UHSL, WTOHF ---'

i, .90, 515., 375., .00001, 375.
'---MI, DEL, DELT, GEXP, GXI, EKI, AI, DXFC, REPI, REPFC ---'

88, 1.37E-4, 1.8E-4, 2.3, .I, 2., 1.0, .50, 3.E4, 25.

'---CU, CI, C2, SK, SE, CC, CVP_---'

.09, 1.44, 1.92, i., 1.3, 0.00, 0.
'---OMEGA, FRAC, ENEXP, RC, KCRC, KCM, RFILE ---'

6.03, .00075, 1.00, I.E20, I, I, 'RC3XI45P'
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Appendix A2

Variable property equations

The equations used to functionally approximate the material properties

of air are given below in eqs. (A2.1) through (A2.3). Figures A2-1 through

A2-3 compare the approximations with the data given in Crawford and Kays

[18].

Thermal Conductivity ( W/(m K) );

K= .0241926 + (7.3851 x 10 -5) T - (3.203 x 10 -8) T2

+ (1.829 x 10 "11) T 3

where T is in degrees C.

(A2.1)

Dynamic Viscosity ( Pa Sec):

_t---1.465 T 1"5 / (110.4+T)

where T is expressed in K

(A2.2)

Specific Heat ( J/(kg K) ):

Cp--1003.6 + .01155 T + (5.453 x 10"4) T 2 - (4.2422 x 10 -7) T 3

(A2.3)

where T is expressed in C.
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Figure A2-1. A comparison of the approximated thermal conductivity with

experimental data [18].
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Figure A2-2. A comparison of the approximated dynamic viscosity with

experimental data [18].
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Appendix A3
Tabulated experimental data

Throughout chapter five, experimental data from a number of sources

was used to evaluate the predictive capabilities of the computational model.

Much of this data had to be extracted from figures through a digitization

process. For the most part this was accomplished with the aid of a Tectronix

4019 terminal tied a graphics tablet. The purpose of this appendix is to

document the actual values which were found through this process and which

are used in the various figures.

Tabulation of the experimental data shown in Figure 5.5 and 5.6 as

extracted from reference [72]. (Rued, fiat plate)

Rex
Grid 0

8.708E+04
1.152E+05
1.466E+05
1.746E+05
2.003E+05
2.356E+05
2.933E+05
3.247E+05
3.548E+05
3.790E+05
4.120E+05
4.370E+05
4.693E+05
4.997E+05

5.599E+05
5.879E+05
6.118E+05
6.519E+05
6.818E+05
7.016E+05

17.681E+05
8.085E+05
8.702E+05

Stanton No
Grid 0

0.001799
0.001447
0.001427
0.001175
0.001185
0.001077
0.001135
0.001069
0.001134

i0.001252
0.001102

0.001251
0.001331
0.OO1445

0.001598
0.001723
0.001872
0.001879
0.002039
0.002119
0.002174
0.002201
0.002236

Rex
Grid 1

9.095E+04
1.157E+05
1.475E+05
1.741E+05
2.069E+05
2.338E+05
2.973E+05
3.215E+05
3.522E+05
3.780E+05
4.145E+05
4.719E+05
4.957E+05
5.482E+05

5.691E+05
6.280E+05
6.787E+05
7.688E+05
7.858E+05
8.215E+05
8.917E+05

Stanton No
Grid 1

0.001720
0.001600
0.001493
0.001358
0.001655
0.001606
0.002043
0.00'2126
0.002270
0.002494
0.002531
0.002616
0.002672
0.002529
0.002584
0.002487
0.002416
0.0O2493
0.002328
0.002373
0.002396

Rex
Grid 2

8.931E+04
1.172E+05
1.491E+05
1.736E+05
2.034E+05
2.243E+05
2.910E+05
3.524E+05
3.833E+05
5.021E+05
9.063E+05
1.013E+06

Stanton No
Grid 2

0.002302
0.002439
0.002784
0.003027
0.003016
0.002964
0.002826
0.002675
0.002681
0.002585
0.002284
0.002328

Rex
Grid 3

8.774E+04
1.151E+05
1.450E+05
1.774E+05
1.995E+05
2.358E+05
2.983E+05
3.497E+05
5.682E+05
7.661E+05
8.917E+05

Rex
Grid 4

8.524E+04
1.122E+05
1.398E+05
1.699E+05
1.981E+05
2.266E+05
2.844E+05
3.126E+05
3.701E+05
3.957E+05
4.233E+05
6.374E+05

Stanton No
Grid 3

0.002614
0.003246
0.003307
0.003187
0.003057
0.002979
0.002921
0.002778
0.002581
0.002498
0.002398

Stanton No
Grid 4

0.003022

0.003404
0.003343

0.003179

0.003127

0.003026
0.002928

0.002865
0.002790
0.002767
0.002708

0.O02570
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Tabulation of the experimental data shown in Figures 5.8 and 5.9 as

extracted from reference [8]. (Blair and Werle)

Rex
Grid 1

1.123E+05
1.379E+05
1.635E+05
1.891E+05
2.148E+05
2.404E+05
2.660E+05
2.917E+05
3.173E+05
3.429E+05
3.685E+05
4.198E+05
4.711E+05
5.223E+05
5.736E+05
6.761E+05
7.786E+05
8.811E+05
9.836E+05
1.086E+06
1.189E+06
1.291E+06
1.394E+06
1.496E+06
1.599E+06
1.701E+06
1.804E+06
1.906E+06
2.009E+06
2.111E+06
2.214E+06
2.368E+06
2.521E+06
2.675E+06
2.829E+06
2.983E+06
3.136E+06
3.290E+06
3.4Z14E+06
3.598E+06
3.752E+06
3.905E+06
4.059E+06
4.213E+06

4.367E+06
4.520E+06
4.674E+06
4.828E+06

Startton No
Grid 1

2.965E-03
2.272E-03
1.986E-03
1.716E-03
1.600E-03
1.489E-03
1.380E-03
1.281E-03
1.240E-03
1.185E-03
1.142E-03
1.120E-03
1.072E-03
1.114E-03
1.146E-03
1.397E-03
1.758E-03
2.008E-03
2.187E-03
2.262E-03
2.218E-03
2.113E-03
2.079E-03
2.038E-03
2.009E-03
1.981E-03
1.954E-03
1.940E-03
1.978E-03
1.898E-03
1.887E-03
1.873E-03
1.843E-03
1.831E-03
1.784E-03

:1.788E-03
1.766E-03
1.754E-03
1.721E-03
1.696E-03
1.719E-03
1.723E-03
1.701E-03
1.703E-03
1.689E-03
1.697E-03
1.639E-03
1.657E-03

Rex
Grid 2

1.132E+05
1.390E+05
1.649E+05

11.907E+05
2.165E+05

2.424E+05
2.682E+05
2.940E+05
3.199E+05

3.457E+05
3.716E+05

14.232E+05

4.749E+05
5.266E+05
5.783E+05
6.816E+05

'7.850E+05

8.883E+05
9.917E+05
1.095E+06
1.198E+06
1.302E+06
1.405E+06
1.508E+06
1.612E+06
1.715E+06
1.819E+06
1.922E+06
2.025E+06
2.129E+06
2.232E+06
2.387E+06
2.542E+06
2.697E+06
2.852E+06
3.007E+06
3.162E+06
3.317E+06
3.472E+06
3.627E+06
3.782E+06
3.937E+06
4.092E+06
4.247E+06
4.402E+06
4.557E+06
4.712E+06
4.867E+06

Stanton No
Grid 2

2.982E-03
2.337E-03
2.073E-03
1.823E-03
1.660E-03
1.605E-03
1.541E-03
1.592E-03
1.591E-03
1.732E-03
1.812E-03
2.106E-03
2.359E-03
2.511E-03

2.451E-03
2.421E-03
2.325E-03
2.243E-03
2.240E-03
2.205E-03
2.134E-03
2.036E-03
2.045E-03
1.994E-03
1.959E-03
1.945E-03
1.910E-03
1.955E-03
1.892E-03
1.858E-03
1.849E-03
1.796E-03
1.794E-03
1.749E-03
1.738E-03
1.714E-03
1.715E-03
1.685E-03
1.681E-03
1.692E-03
1.684E-03
1.678E-03
1.686E-03
1.660E -03
1.665E-03
1.632E-03
1.607E-03

Rex
Grid 3

1.124E+05
1.381E+05
1.638E+05
1.894E+05
2.151E+05
2.408E+05
2.664E+05
2.921E+05
3.178E+05
3.434E+05
3.691E+05
4.204E+05
4.718E+05
5.231E+05
5.744E+05
6.771E+05
7.798E+05
8.824E+05
9.851E+05
1.088E+06
1.190E+06
1.293E+06
1.396E+06
1.498E+06
1.601E+06
1.704E+06
1.806E+06
1.909E+06
2.012E+06
2.114E+06
2.217E+06
2.371E+06
2.525E+06
2.679E+06
2.833E+06
2.987E+06
3.141E+06
3.295E+06
3.449E+06

3.603E+06
3.757E+06
3.911E+06
4.065E+06
4.219E+06
4.373E+06
4.527E+06
4.681E+06
4.835E+06

Stanton No
Grid 3

4.179E-03
3.374E-03
3.307E-03
3.208E-03
3.259E-03
3.180E-03
3.101E-03
3.052E-03
3.051E-03
3.027E-03
2.958E-03
2.827E-03
2.883E-03
2.822E-03
2.780E-03
2.572E-03
2.564E-03
2.50(0-03
2.402E-03
2.401E-03
2.357E-03
2.282E-03
2.218E-03
2.176E-03
2.181E-03
2.088E-03
2.068E-03
2.045E-03
2.126E-03
2.036E-03
2.028E-03
1.978E-03
1.924E-03
1.940E-03
1.917E-03
1.9(_E-03
1.897E-03
1.872E-03
1.856E-03
1.837E-03
1.857E-03
1.864E-03
1.866E-03
1.875E-03
1.930E-03
1.825E-03
1.794E-03
1.795E-03
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Tabulation of the experimental data shown in Figure 5.14 as extracted

from reference [9]. (Blair and Werle, lower K)

X (m)
Grid 1

0.0528
0.0680
0.0775
0.0941
0.1019
0.1116
0.1293
0.1425
0.1567
0.1700
0.1816
0.2039
0.2350
0.2591
0.2841
0.3340
0.3858
0.4340
0.4894
0.5386
0.5859
0.6431
0.6933
0.7399
0.7945
0.8429
0.8950
0.9498
0.9975
1.0478
1.0984
1.1728
1.2502
1.3266
1.4056
1 47R'_

Stanton No
Grid 1

0.004648
0.003283
0.002813
0.002399
0.002223
0.002030
0.001891
0.001748
0.001640
0.001580
0.001534
0.001471
0.001333
0.001304
0.001247
0.001113
0.001051
0.000974
0.000926
0.000886
0.000832
0.000796
0.000785
0.000785
0.000782
0.000797
0.000844
0.000867
0.000953
0.001019
0.001174
0.001222
0.001369
0.001526
0.001605
0.001671

x (m)
Grid 2

0.0547
0.0646
0.0776
0.0951
0.1083
0.1162
0.1304
0.1481
0.1624
0.1694
0.1854
0.2086
0.2363
0.2856
0.3350
0.3891
0.4377
0.4872
0.5376
0.5878
0.6397
0.6864
0.7418
0.8403
0.8931
0.9468
0.9944
1.0480
1.1035
1.1752
1.2467
1.3274
1.4062
1.4805

Stanton No
Grid 2

0.004833
0.003473
0.002962
0.002519
0.002340
0.002127
0.002020
0.001886
0.001831
0.001739
0.001655
0.001618
0.001579
0.001547
0.001639
0.001837
0.002039
0.002252
0.002421
0.002449
0.002411
0.002481
0.002401
0.002333
0.002297
0.002245
0.002282
0.002192
0.002148
0.002145
0.002040
0.002032
0.002029
0.002022

X (m)
Grid 3

0.0619
i0.0785
0.0897
0.0996
0.1124
0.1410
0.1554
0.1869
0.2100
0.2372
0.2617
0.2904
0.3405
0.3878
0.4451
0.4909
0.5411
0.5927
0.6372
0.6973
0.7475
0.7948
0.8536
0.8966
0.9554
0.9999
1.0544
1.0974
1.1792
1.2495
1.3341
1.4029

Stanton No
Grid 3

0.005462
0.004157
0.003768
:0.003415
0.003311
0.003220
0.003161
0.003149
0.003297
0.003295
0.003325
0.003333
0.003152
0.003083
0.002960
0.002851
0.002876
0.002719
0.002726
0.002617
0.002506
0.002451
0.002434
0.002402
0.002342
0.002392
0.002325
0.002316
0.002285
0.002221
0.002178
0.002143



252

Tabulation of the experimental data shown in Figure 5.15 as extracted

from reference [9]. (Blair and Werle, higher K)

X (m)
Grid 2

0.05013
0.06645
0.08134
0.08276
0.10226
0.11461
0.12872
0.14212
0.15724
0.17235
0.20357
0.23658
0.26073
0.28484

0.33038

0.43505
0.48880
0.54442

0.59012
0.64486
0.74097
0.84343
0.89014

0.94945
0.99540

1.10315

1.17506

1.25133
1.32497

1.39939

1.47658

Stanton N¢
Grid 2

0.006165
0.004539
0.003904
0.003325

0.003010

0.002751
0.002472
0.002412
0.002281
0.002146
0.001975
10.001823
0.001757
,0.001661

0.001511

0.001317
0.001267
0.001245
0.001208
0.001199
0.OO1246
0.001329
0.001341
0.001394
0.001498
0.001530
0.001586
0.001577
0.001619
0.001571
0.001574

X (m)
Grid 3

0.05098
0.06463

0.07598
0.08914

0.10510

0.11575
0.12640
0.14157
0.15493
0.16921
0.18084
0.20243
0.23293
0.27610
0.32903
0.43231

10.48519
0.53553
0.58478

0.63950

0.73901

0.83945
0.89141

0.94524

0.99012

1.04206
1.09858
1.17569
1.24737
1.32540
1.40249
1,47958

Stanton No
Grid 3

0.0O6O61
0.004506
0.003932
0.003465
0.003198
0.003039
0.002887
0.002790
0.002677
0.002581

0.002544
0.002599

0.002580
0.002668

0.002654

0.002730
0.002650
0.002728
0.002629
0.002583

0.002477
0.002374
0.002300

0.002254
0.002276
0.002156
0.002129
0.002067
0.001972
0.0O1928
0.001858

O.O01782
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Tabulation of the experimental data shown in Figure 5.18 as extracted

from reference [72] (Rued)

x (m)
Nr. 6

0.0460
0.0575
0.0690
0.0806
0.0921
0.1036
0.1151
0.1266
0.1381
0.1496
0.1611
0.1726
0.1841
0.1956
0.2071
0.2186
0.2301
0.2417
0.2532
0.2647
0.2762
0.2877
0.2992
0.3107
0.3222
0.3337
0.3452
0.3567
0.3682
0.3797
0.4028
0.4258

Kxl06
Nr. 6

0.751
0.822
0.893
0.965
1.036
1.108
1.156
1.179
1.179
1.179
1.179
1.191
1.222
1.227
1.227
1.215
1.203
1.203
1.203
1.203
1.203
1.215
1.227
1.239
1.251
1.251
1.263
1.251
1.203
1.084
0.846
0.393

x (m)
Nr. 10

0.0345
0.0460
0.0575
0.0690
0.0806
0.0921
0.1036
0.1151
0.1266
0.1381
0.1496
0.1611
0.1726
0.1841
0.1956
0.2071
0.2186
0.2301
0.2417
0.2532
0.2647
0.2762
0.2877
0.2992
0.3107
0.3222
0.3337
0.3452
0.3567
0.3682
0.3797
0.4028
0.4258

Kx 106

Nr. lO
1.32
1.894
2.132
2.395
2.704
2.99
3.157
3.24
3.252
3.205
2.943
2.609
2.275
1.93
1.561
1.227
0.929
0.703
0.512
0.322
0.155
0.036
-0.06
-0.107
-0.107
-0.095
-0.107
-0.095
-0.06
-0.083
-0.119
-0.143
-0.083

X (m)
Nr. 12

0.0461
0.0559
0.0838
0.0978
0.1061
0.1229
0.1397
0.1536
0.1676
0.1955
0.2235
0.2514
0.2793
0.2933
0.3073
0.3352
0.3631
0.3911
0.4190

Kxl06
Nr. 12

3.427
3.749
4.977
5.561

15.795
5.795
5.474
5.123

!4.421
2.754
1.497
0.620
0.006
-0.140
-0.184
-0.184
-0.199
-0.228
-0.140
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Tabulation of the experimental data shown in Figure 5.19 as extracted
from reference [72]. (Rued)

X (m)
Nr. 6

0.0000
0.0345
0.0460
0.0575
0.0690
0.0806
0.0921
0.1036
0.1151
0.1266
0.1381
0.1496
0.1611
0.1726
0.1841
0.1956
0.2071
0.2186
0.2301
0.2417
0.2532
O.2647
0.2762
0.2877
0.2992
0.3107
0.3222
0.3337
0.3452
0.3567
0.3682
0.3797
0.4028
0.4258

U (m/s)
Nr. 6

48.96
49.91
49.91
51.10
51.58
52.29
53.48
54.66
55.85
57.04
58.23
59.66
61.08
62.75
64.17
65.95
67.74
69.76
72.49
74.39
76.65
80.45
81.64
84.37
87.34
90.43
93.88
98.63
103.62
109.33
114.44
119.43
129.17
136.07

X (m)
Nr. 10

0.0000
0.0345
0.0460
0.0575
0.0690
0.0806
0.0921
0.1036
0.1151
0.1266
0.1381
0.1496
0.1611
0.1726
0.1841
0.1956
0.2071
0.2186
0.2301
0.2417
0.2532
0.2647
0.2762
0.2877
0.2992
0.3107
0.3222
0:3337
0.3452
0.3567
0.3682
0.3797
0.4028
0.4258

U (m/s)
Nr. 10

47.50
48.30
49.32
51.10
53.48
55.85
59.42
62.98
68.33
73.68
80.81
89.13
98.04
108.14
117.65
127.15
135.47
143.79
149.73
154.49
157.46
158.65
159.24
158.29
157.10
156.27
155.20
154.25
153.30
152.35
152.11
151.52
149.73
147.95

X (m)
Nr. 12

0.0279
0.0461
0.0559
0.0838
0.0978
0.1061
0.1229
0.1397
0.1536
0.1676
0.1955
0.2235
0.2514
0.2793
0.2933
0.3073
0.3352
0.3631
0.3911
0.4190

U (m/s)
Nr. 12

26.47
27.94
28.68
32.35
35.00
36.77
41.18
46.32
51.47
57.35
70.59
80.15
85.88
86.77
86.62
85.59
84.56
83.82
82.35
80.88
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Tabulation of the experimental data shown in Figure 5.22 as extracted

from reference [72]. (Rued, Nr. 6)

X (m)
Grid I

4.6703E-02
6.2027E-02
7.6423E-02
9.1347E-02
1.0654E-01
1.2120E-01
1.5103E-01
1.6663E-01
1.8114E-O1
1.9754E-01
2.1218E-01
2.2751E-01
2.4269E-01
2.5842E-01
2.8812E-01
3.0398E-01
3.1661E-01
3.3382E-01
3.4739E-01
3.6272E-01
3.9081E-01
4.0653E-01
4.2198E-01

Stanton No
Grid 1

2.6780E-03
2.6098E-03
2.0976E-03
1.9073E-03
1.6595E-03
1.5776E-03
1.6204E-03
1.5861E-03
1.6261E-03
1.7342E-03
1.7810E-03
1.8448E-03
1.9052E-03
1.8946E-03
2.0391E-03
2.1064E-03
2.0174E-03
1.9698E-03
2.1654E-03
2.0802E-03
2.0821E-03
2.1901E-03
2.3793E-03

X (m)
Grid 2

4.7385E-02
6.1888E-02
7.8558E-02

9.2260E-02
1.0744E-01
1.2289E-01
1.5150E-01
1.6856E-01
1.8387E-01
1.9663E-01
2.1248E-01
2.2632E-01
2.4190E-01
2.5789E-01
2.8812E-01
3.0343E-01
3.1660E-01
3.3205E-01
3.4790E-01
3.6214E-01
3.9102E-01
4.0687E-01
4.2191E-01

Stanton No
Grid 2

3.0880E-03
3.1483E-03
2.8805E-03
2.8526E-03
2.8080E-03
2.8109E-03
2.8231E-03
2.8127E-03
2.8088E-03
2.7265E-03
2.7024E-03
2.6711E-03
2.6266E -03
2.5755E-03
2.4660E-03
2.4553E-03
2.3561E-03
2.2303E-03
2.3282E-O3
2.2326E-03
2.2042E-03
2.3054E-03
2.3285E-03

X (m)
Grid 3

4.6773E-02
6.1667E-02
7.7127E-02 _
9.1913E-02 _
1.0657E-01
1.2175E-01
1.5171E-01
1.6784E-01
1.8209E-01
1.9646E-01
2.1245E-01
2.2615E-01
2.4254E-01
2.5812E-01
2.8809E-01
3.0380E-01
3.1643E-01
3.3242E-01
3.4760E-01
3.6184E-01
3.9099E-01
4.0657E-01
4.2135E-01

St,anion No
Grid 3

3.5883E-03
3.8216E-03
3.6279E-03
3.4578E-03
3.2572E-03
3.1685E-03
3.0284E-03
2.9094E-03
2.7935E-03
2.7691E-03
2.7009E-03 I
2.6628E-03 :
2.6320E-03
2.5875E-03
2.4270E-03
2.4300E-03
2.3679E-03
2.2794E-031
2.2585E-03
2.2036E-03
2.1718E-03
2.2629E-03
2.2284E-03

x (m)
Grid 4

4.6547E-02
6.1593E-02
7.6926E-02
9.2251E-02
1.0664E-01
1.2143E-01
1.5127E-01
1.6807E-01
1.8272E-01
1.9643E-01
2.1228E-01
2.2599E-01
2.4185E -01
2.5811E-O 1
2.8795E-01
3.0353E-01
3.1657E-01
3.3270E-01
3.4788E-01
3.6186E-01
3.9075E-01
4.0633E-01
4.2192E-011

Stanton No
Grid 4

3.9678E-03
4.0212E-03
3.7427E-03
3.6064E-03
3.3921E-03
3.2388E-03
2.9593E-03
2.9182E-03
2.8123E-03
2.7604E-03
2.7326E-03
2.7180E-03
2.6530E-03
2.6117E-03
2.4712E-03
2.4671E-03
2.3575E-03
2.3332E-03
2.3561E-03
2.2568E-03
2.2008E-03
2.2882E-03
2.2536E-03
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Tabulation of the experimental data shown in Figure 5.23 as extracted

from reference [72]. (Rued, Nr. 10)

x (m)
Grid I

4.7412E-02
6.3253E-02
7.831 IE-02
9.4048E-02
1.0790E-01
1.2366E-01
1.5377E-01
1.6904E-01
1.8351E-01
1.9838E-01
2.1364E-01
2.2893E-01
2.4369E-01
2.5873E-01

2.8763E-01 i
3.0323E-01
3.1775E-01 I
3.3336E-01
3.4725E-01
3.6179E-01
3.9315E-01
4.0717E-01
4.2066E-01

Stanton No
Grid 1

2.8430E-03
2.4796E-03
2.1805E-03
1.9015E-03
1.6126E-03
1.4079E-03
1.1608E-03
1.0945E-03
1.0149E-03
9.6900E-04
8.5889E-tM
8.3993E-04
8.4468E-04
8.5952E-04
1.0041E-03
1.1168E-03
1.2060E-03
1.3220E-03
1.5430E-03
1.6828E-03
1.9588E-03
2.1257E-03
2.3331E-03

x (m)
Grid 2

4.7418E-02
6.3419E-02
7.8634E-02
9.3862E-02
1.0922E-01
1.2347E-01
1.5463E-01
1.6829E-01
1.8276E-01
1.9916E -01
2.1327E-01
2.2832E-01
2.4498E-01
2.6297E-01
2.8831E-01
3.0230E-01
3.1850E-01
3.3364E-01
3.4965E-01
3.6184E-01
3.9188E-01
4.0679E-01
4.2424E-01

Stanton Nc
Grid 2

3.2482E-03 ]

2.9590E-03 I

2.7240E-03 I
2.5261E-03
2.3080E-03 :
2.o157E-o3 !
2.1026E-03
2.0062E-03

i 1.9705E-032.0459E-03
12.1182E-03
2.1601E-03
2.2186E-03
2.2567E-03
2.1992E-03
2.2952E-03
2.1951E-03
2.1525E-03
2.2719E-03
2.2027E-03
2.1615E-03
2.1899E-03
2.2347E-03

x (m)
Grid 3

4.8016E-02
6.3112E-02
7.866TE-02
9.3126E -02
1.0793E-01
1.2343E-01
1.5341E-01
1.6799E-01
1.8247E-01
1.9830E-01
2.1333E-01
2.2835E-01
2.4460E-01
2.5853E-01
2.8831E-01
3.0282E-01
3.1901E-01
3.3349E-01
3.4893E-01
3.6100E-01
3.9199E-01
4.0691E-01
4.2167E-01

Stanton No
Grid 3

3.8119E-03
3.6208E-03
3.2068E-03
3.1137E -03
2.8652E-03
2.6673E-03
2.4437E-03
2.3236E-03
2.2946E-03
2.2790E-03
2.2769E-03
2.2681E-03
2.2896E-03
2.2336E-03
2.2093E-03
2.2614E-03
2.1208E-03
2.0817E-03
2.1201E-03
2.0914E-03

2.0872E-03
2.1493E-03
2.1710E-03:

X (m)
Grid 4

4.8788E-02
6.2844E -02
7.8531E-02
9.3865E-02
1.0840E-01
1.2442E-01
1.5302E-01
1.6829E-01
1.8316E-01
1.9899E-01
2.1348E-01
2.2811E-01
2.4515E-01
2.5883E-01
2.8821E-01
3.0296E-01
3.1849E-01
3.3353E-01
3.4856E-01
3.6088E-01
3.9164E-01
4.0721E-01
4.2027E-011

Stanton No
Grid 4

4.1055E-03
4.0091E-03
3.5883E-03
3.3094E-03
3.0407E-03
2.8089E-03
2.4944E-03
2.4181E-03
2.3317E-03
2.3261E-03
2.3343E-03
2.3256E-03
2.3469E-03
2.3180E-03
2.2938E-03
2.2749E-03
2.1681E-03
2.2201E-03
2.2113E-03
2.1556E-03
2.2392E-03
2.2506E-03
2.3838E-03
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Tabulation of the experimental data shown in Figure 5.24 as extracted

from reference [72]. (Rued, Nr. 12)

x (m)
Odd 1

4.7877E-02
6.3058E-02
7.7484E-02
9.3312E-02
1.0748E-01
1.2160E-01
1.5353E-01
1.6755E-01
1.8320E-01
1.9869E-01
2.1326E-01
2.2690E-01
2.4235E-01
2.5853E-01
2.8788E-01
3.0375E-01
3.1816E-01
3.3271E-01
3.4716E-01
3.6245E-01
3.9285E-01
4.0787E-01
4.2184E-01

Stanton No
Grid 1

3.3694E-03
3.1751E-03
2.6658E-03
2.2408E-03
1.9418E-03
1.7648E-03
1.5080E-03
1.3887E-03
1.2858E-03
1.1457E-03
1.0330E-03
9.4086E-04
9.4315E-04
8.2996E-04
7.3328E-04
7.5918E-04
8.1262E-04
8.6602E-04
7.8045E-04
7.3872E-04
9.9091E-04
1.1391E-03
9.4858E-04

x (m)
Grid 2

4.8072E-02
6.2591E-02
7.7038E-02
9.3514E-02
1.0771E-01
1.2225E-01
1.5321E-01
1.6774E-01
1.8355E-01
1.9943E-01 _
2.1413E-01
2.2711E-01
2.4283E-01
2.5849E-01
2.8727E-01
3.0347E-01

3.1819E-01
3.3344E-01
3.4797E-01
3.6293E-01
3.9224E-01
4.0663E-01
4.2240E-01

Stanton No
Grid 2

3.4574E-03
3.2769E-03
2.7981E-03
2.3391E-03
2.0807E-03
1.9307E-03
1.6301E-03
1.4632E-03
1.4010E-03
1.2438E-03
1.1378E-03
1.0628E-03
1.0617E-03
9.7913E-04
1.0148E-03
1.1254E-03
1.2364E-03
1.3336E-03
1.5633E-03
1.6234E-03
2.0454E-03
2.2650E-03
2.3350E-03

x (m)
Grid 3

!4.7725E-02
6.2067E-02
7.8658E-02
9.3294E-02
1.0699E-01
1.2227E-01
1.5253E-01
1.6731E-01
1.8282E-01
1.9860E-01
2.1292E-01
2.2603E-01
2.4078E-011
2.5833E-01
2.8790E-01
3.0282E-01
3.1891E-01
3.3258E-01
3A814E-O1
3.6336E-01
3.9254E-01
4.0670E-01
4.2243E-01

Stanton No

Grid 3

3.7321E-03
3.6839E-03
3.1977E-03
2.7968E-03
2.5894E-03
2.3409E-03
2.0066E-03
1.8057E-03
1.6995E-03
1.5966E-03
1.5111E-03
1.4428E-03
1.5877E-03
1.7080E-03
2.1164E-03
2.3189E-03
2.4668E-03
2.4187E-03
2.5837E-03
2.4437E-03
2.4860E-03
2.5531E-03

12.3756E-03

X (m)
Grid 4

4.7730E-02
6.2842E-02
7.8937E-02
9.3563E-02
1.0714E-01
1.2296E-01
1.5289E-01
1.6818E-01
1.8261E-01
1.9841E-01
2.1263E-01
2.2552E-01
2.4275E-01
2.5810E-01
2.8761E-01
3.0312E-01
3.1831E-01
3.3221E-01
3.4751E-01
3.6369E-01
3.9231E-01
4.0525E-01
4.2228E-01

S_nton No
Grid 4

4.3220E-03
4.4159E-03
3.7943E-03
3.3798E-03
3.0097E-03
2.7610E-03

12.3320E-03
2.1004E -03
1.9809E-03
1.9119E-03
1.8773E-03
1.8600E-03
2.1024E-03
2.1590E-03
2.4725E-03
2.5697E-03
2.5788E-03
2.6697E-03
2.6449E-03
2.5283E-03
2.5369E-03
2.6010E-03
2.5486E-03
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Tabulation of the experimental data shown in Figure 5.27 and 5.28 as

extracted from references [20] and [77]

S/L
ReD

3.590E-02
5.525E-02
9.058E-02
1.280E-01
1.687E-01
2.015E-01
2.018E-01
2.465E-01
3.634E-01
4.180E-01
6.230E-01
6.374E-01
7.057E-01
7.856E-01
8.156E-01
8.497E-01
8.932E-01
9.167E-01

Pressure Side
H

W/(m*m K)

1.056E+03
8.929E+02
7.220E+02
6.838E+02
6.454E+02
6.752E+02
5.604E+02
5.923E+02
7.249E+02
7.105E+02
8.171E+02
8.646E+02
9.891E+02
1.049E+03
9.769E+02
1.091E+03
1.098E+03
1.036E+03

S/L
Re+

6.012E-02
9.896E-02
1.365E-01
1.730E-01
2.045E-01
2.123E-01
2.507E-01
3.686E-01
4.267E-01
6.463E-01
7.146E-01
7.914E-01
8.579E-01
9.235E-01

H
W/(m*m KI
1.272E+03
1.176E+03
1.169E+03
1.212E+03
1.275E+03
9.598E+02
9.949E+02
1.238E+03
1.351E+03
1.644E+03
1.798E+03
1.940E+03
1.962E+03
1.787E+03

S/L
ReD

3.710E-03
1.071E-02
5.126E-02
8.050E-02
7.887E-02
1.377E-01
1.847E-01
2.525E-01
3.194E-01
3.822E-01
4.302E-01
4.420E-01
4.781E-01
5.313E-01
5.550E-01
5.780E-01
6.015E-01
6.405E-01
6.417E-01
6.889E-01
8.388E-01
8.637E-01
9.013E-01
9.249E-01
9.796E-01
9.984E-01
1.035E+00
1.072E+00
1.096E+00
1.131E+00

1.220E+00

Suction Side
H

W/(m*m K_

2.096E+03
1.795E+03
1.321E+03
1.005E+03
8.999E+02
7.845E+02
6.399E+02
5.522E+02
5.741E+02
6.077E+02
9.569E+02
6.633E+02
9.817E+02
1.068E+03
9.876E+02
1.030E+03
1.049E+03
1.059E+03
1.131E+03
1.199E+03
1.115E+03
1.156E+03
1.223E+03
1.077E+03
1.195E+03
1.059E+03
1.294E+03
1.015E+03
1.085E+03
9.248E+02
8.722E+02

S/L
Re+

5.868E-02
1.191E-01
1.819E-01
2.886E-01
3.165E-01
3.784E-01
4.268E-01
4.374E-01
4.766E-01
5.255E-01
5.743E-01
6.339E-01
8.364E-01
8.973E-01
9.729E-01
1.031E+00
1.094E+00
1.222E+00

H

W/fm*m K]
1.296E+03
1.189E+03
1.479E+03
2.285E+03
2.410E+03
2.321E+03
1.824E+03
2.377E+03
1.776E+03
1.g48E+03
1.687E+03
1.860E+03
1.691E+03
1.643E+03
1.658E+03
1.583E+03
1.370E+03
1.243E+03
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Tabulation of the experimental velocity data around the blade of

Daniels as extracted from references [20] and [77]. This data is

compared with the functional approximations used in the calculations

in the two figures that follow.

S/L (Suct)
ReD data

0.040
0.086
0.165
0.250
0.319
0.397
0.494
0.608
0.675
0.747
0.821
0.899
0.982
1.071
1.184
1.272

u/u1
ReD data

1.474
1.970
2.259
2.262
2.227
2.379
2.552
2.675
2.734
2.672
2.591
2.590
2.727
2.802
2.930
2.680

S/t, (suc0
Re+ data
0.040
0.086
0.168
0.248
0.318
0.397
0.493
0.609
0.674
0.746
0.820
0.898
0.981
1.068
1.183
1.270

U/U1
Re+ data

1.518
1.927
2.386
2.337
2.334
2.469
2.601
2.768
2.815
2.712
2,687
2.657
2.808
2.852
3.049
2.809

S/L (press',
data

0.0
0.172
0.298
0.397
0.507
0.624
0.755
0.894
0.959
0.0
0.172
0.298
0.397
0.505
0.625
0.755
0.893
0.960

U/Ul
data
0.0
0.279
0.706
0.828
1.051
1.307
1.670
2.271
2.719
0.0
0.231
0.560
0.775
0.985
1.270
1.723
2.223
2.686

4

! ! I ! |

0.00 0.25 0.50 0.75 1.00 1.25

S/L

1.50

a. Comparison with data on the suction side
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a. Comparison with data on the pressure side
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Appendix A4
Code used to calculate starting location velocity profile parameters

This is a FORTRAN listing of the simple code written to calculate the

boundary layer thickness and acceleration factor for use at the initial starting

location. This is the implementation of the method explained in section 2.3.3,

equations (2.30) - (2.34)

1

2

3

4

5
6
7

8

9

i0
Ii

12

13

14

15
16

17

18

19

20
21

22

23

24

25
26

27

28

29

3O
31

32

33

34

35

36
37

38

39

4O

PROGRAM DELIN

XO=0.

SUM=0.

PRINT*, 'INPUT THE KINEMATIC VISCOSITY IN M*M/S'
REA/)*,ANU

PRINT*, 'INPUT DX, AND THE NUMBER OF STEPS TO TAKE,

READ*, DX, ISTEPS
PRINT*, ' '

PRINT*,'X (M) U (M/S) DU/DX (l/S) DEL2 RE2'

UO=UMI (XO)

DO 10 I=l, ISTEPS
X=XO+DX

UI=UMI (X)

DU= (UI-UO)/DX

ETA=UO/UI

B= (XO-ETA*X) / (i.-ETA)
PHI 0=XO-B

PHII=X-B

A= (UI/PHII) **5

SUM=SUM+A/6. * (PHII**6-PHI0**6)

DEL2--SQRT (.45*ANU*SUM) / (UI**3)
RE2=UI*DEL2/ANU

WRITE (6, 99) X, UI,DU, DEL2,RE2
XO=X

UO=UI
i0 CONTINUE

ALAM=DEL2* DEL2*DU/ANU

PRINT*, 'LAMDA=' ,ALAM

PRINT*, 'INPUT THE SHAPE FACTOR S FROM TABLE 4.8 IN WHITE'

READ*, SF
DEL99=0.

DO 20 J=i,20

DEL99=DEL2/SF* (2. +DEL99**2*DU/(6. *ANU) )

PRINT*, J,DEL99

20 CONTINUE
OMEGA=DEL99*DEL 99*DU/ANU

pRINT*, 'OMEGA= ',OMEGA

99 FORMAT (' ',F7.5, 3X, F8.3, 5X, FI0.3, 3X, IP2EI2.3)

STOP
END

ISTEPS'
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16. Abstract

In this thesis the use of low-Reynolds-number (LRN) forms of the k-_ turbulence model in predicting transitional boundary

layer flow characteristic of gas turbine blades is developed. The research presented consists of: (1) an evaluation of two

existing models, (2) the development of a modification to current LRN models, and (3) the extensive testing of the proposed

model against experimental data. In the first part of this thesis, the prediction characteristics and capabilities of the Jones-

Launder (1972) and Lam-Bremhorst (1981) LRN k-¢ turbulence models are evaluated with respect to the prediction of

transition on fiat plates. The sensitivity of these model's predictions to free-stream turbulence intensity, initial starting

location, and assumed initial starting profiles of k and ¢ is determined and presented. Although both models predict the correct

qualitative characteristics, they are also shown to exhibit significant quantitative deficiencies with respect to the predicted
location and length of transition. Next, the mechanism by which the models simulate transition is considered and the need for

additional constraints discussed. A modification to the production term in the modeled turbulent kinetic energy equation is

proposed which can be correlated to the free-stream turbulence level. The modification does not affect the fully turbulent

calculations but is shown to greatly improve the nature of the transition predictions. Calibration of the empirical parameters

introduced is accomplished by comparison with the correlation of Abu-Gharmam and Shaw (1980). The application of the

model is developed and compared for use with both the Jones-Launder and the Lam-Bremhorst LRN k-¢ turbulence models.
In the last section, the transition predictions of the new model are compared with a wide range of different experiments.

These include experiments in transitional flows with free-stream turbulence under the following conditions: (1) fiat plate

constant velocity, (2) fiat plate, constant acceleration, (3) flat plate but strongly variable acceleration, and (4) flow around

turbine blade test cascades. In general, the calculational procedure is shown to yield good agreement with most of the

experiments. Some deficiencies are however exhibited, and these are discussed in the spirit of providing guidance for future

improvement.
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